Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Online resource

Results 2 resources

  • Massive injection of 13C depleted carbon to the ocean and atmosphere coincided with major environmental upheaval multiple times in the geological record. For several events, the source of carbon has been attributed to explosive venting of gas produced when magmatic sills intruded organic-rich sediment. The concept mostly derives from studies of a few ancient sedimentary basins with numerous hydrothermal vent complexes (HTVCs) where craters appear to have formed across large areas of the seafloor at the same time, but good examples remain rare in strata younger than the Early Eocene. We present geophysical data documenting at least 150 large (km-scale) craters on the modern seafloor across ∼148,000 km2 of Scan Basin in the southern Scotia Sea, a remote region offshore Antarctica. Seismic and bathymetric information reveals the craters relate to vertical fluid pipes extending above dome-shaped forced folds and saucer-shaped igneous sills. Presumably, magmatic intrusions deform overlying sediment and produce thermogenic gas, where buoyant hydrothermal fluids migrate upwards from sill flanks through V-shaped gas chimneys to the seafloor. Fluid expulsion, driven by excess pore pressure, enhances vertical conduits and creates collapse structures on the seafloor. Age estimates for sill emplacement and crater formation come from correlations of seismic reflectors with bore hole data collected on IODP Expedition 382. Sills intruded into sediment at least two times, first about 12–13 Ma (Middle Miocene), which occurred with deep intrusions of stacked composite sills, and once about 0.9 Ma and associated with volcanism along Discovery Bank, which may have reactivated previous fluid venting. Crater reactivation has occurred since 0.9 Ma, although probably episodically. Importantly, at present-day, numerous craters related to sills and fluid pipes populate the seafloor above a young sedimentary basin, and the ocean and atmosphere are receiving massive quantities of 13C depleted carbon. The two phenomena are unrelated but, with changes in global climate and sedimentation, the craters could be filled simultaneously and give an impression in the rock record of rapid and coeval formation coincident with carbon emission. Interpretations of ancient HTVCs and their significance to global carbon cycling needs revision with consideration of modern seafloor regions with HTVCs, notably Scan Basin.

  • The Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin of Antarctica recovered a sedimentary succession ranging in age from lower Eocene to the Holocene. Excellent stratigraphic control is key to understanding the timing of paleoceanographic events through critical climate intervals. Drill sites recovered the lower and middle Eocene, nearly the entire Oligocene, the Miocene from about 17 Ma, the entire Pliocene and much of the Pleistocene. The paleomagnetic properties are generally suitable for magnetostratigraphic interpretation, with well-behaved demagnetization diagrams, uniform distribution of declinations, and a clear separation into two inclination modes. Although the sequences were discontinuously recovered with many gaps due to coring, and there are hiatuses from sedimentary and tectonic processes, the magnetostratigraphic patterns are in general readily interpretable. Our interpretations are integrated with the diatom, radiolarian, calcareous nannofossils and dinoflagellate cyst (dinocyst) biostratigraphy. The magnetostratigraphy significantly improves the resolution of the chronostratigraphy, particularly in intervals with poor biostratigraphic control. However, Southern Ocean records with reliable magnetostratigraphies are notably scarce, and the data reported here provide an opportunity for improved calibration of the biostratigraphic records. In particular, we provide a rare magnetostratigraphic calibration for dinocyst biostratigraphy in the Paleogene and a substantially improved diatom calibration for the Pliocene. This paper presents the stratigraphic framework for future paleoceanographic proxy records which are being developed for the Wilkes Land margin cores. It further provides tight constraints on the duration of regional hiatuses inferred from seismic surveys of the region.

Last update from database: 3/1/25, 3:17 AM (UTC)