Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 23 resources
-
The coastal Droning Maud Land in East Antarctica is characterized by small ice shelves with numbers of promontories and locally grounded isles, both called ice rises. These ice rises are typically dome-shaped and surface elevations are hundreds of meters above the surrounding ice shelves, which cause strong orographic effects on surface mass balance (SMB). We conducted shallow ice-penetrating radar sounding to visualize firn stratigraphy in the top 35 m over ~400 km of profiles across the Nivlisen Ice Shelf, and in a grid pattern over two adjacent ice rises (Djupranen and Leningradkollen). We tracked six reflectors (isochrones) and dated them using two ice cores taken at the ice rise summits, from which SMB over six periods in the past three decades was retrieved. The overall SMB pattern across the ice shelf remained similar for all periods; however, the eastwest contrast in SMB varies by a factor of 1.5–2 between the Leningradkollen and Djupranen grounding lines. The SMB patterns over the ice rises are more varied owing to complex interactions between topography, snowfall and wind. We use our results to evaluate the regional climate model RACMO2.3p2 in terms of the spatial SMB distribution and temporal changes over the ice shelf and ice rises at regional scale.
-
Ice rises and rumples, locally grounded features adjacent to ice shelves, are relatively small yet play significant roles in Antarctic ice dynamics. Their roles generally depend upon their location within the ice shelf and the stage of the ice-sheet retreat or advance. Large, long-stable ice rises can be excellent sites for deep ice coring and paleoclimate study of the Antarctic coast and the Southern Ocean, while small ice rises tend to respond more promptly and can be used to reveal recent changes in regional mass balance. The coasts of Dronning Maud Land (DML) and Enderby Land in East Antarctica are abundant with these features. Here we review existing knowledge, presenting an up-to-date status of research in these regions with focus on ice rises and rumples. We use regional datasets (satellite imagery, surface mass balance and ice thickness) to analyze the extent and surface morphology of ice shelves and characteristic timescales of ice rises. We find that large parts of DML have been changing over the past several millennia. Based on our findings, we highlight ice rises suitable for drilling ice cores for paleoclimate studies as well as ice rises suitable for deciphering ice dynamics and evolution in the region.
-
Direct measurements of spatially distributed vertical strain within ice masses are scientifically valuable but challenging to acquire. We use manual marker tracking and automatic cross correlation between two repeat optical televiewer (OPTV) images of an ~100 m-long borehole at Derwael Ice Rise (DIR), Antarctica, to reconstruct discretised, vertical strain rate and velocity at millimetre resolution. The resulting profiles decay with depth, from −0.07 a−1 at the surface to ~−0.002 a−1 towards the base in strain and from −1.3 m a−1 at the surface to ~−0.5 m a−1 towards the base in velocity. Both profiles also show substantial local variability. Three coffee-can markers installed at different depths into adjacent boreholes record consistent strain rates and velocities, although averaged over longer depth ranges and subject to greater uncertainty. Measured strain-rate profiles generally compare closely with output from a 2-D ice-flow model, while the former additionally reveal substantial high-resolution variability. We conclude that repeat OPTV borehole logging represents an effective means of measuring distributed vertical strain at millimetre scale, revealing high-resolution variability along the uppermost ~100 m of DIR, Antarctica.
-
We use ice flow modelling to simulate the englacial stratigraphy of Blåskimen Island, an ice rise in Dronning Maud Land and elucidate the evolution of this data-sparse region. We apply a thermo-mechanically coupled Elmer/Ice model to a profile along flowlines and through the ice-rise summit, where surface mass balance (SMB), flow velocity and ice stratigraphy were recently measured. We conclude that: (i) the ice rise is presently thickening at a rate of 0.5~0.6 m ice equivalent per year (mieq a−1), which is twice an earlier estimate using the field data and the input–output method; (ii) present thickening started 20–40 years in the past, before which the ice rise was in a steady state; (iii) SMB contrast between the upwind and downwind slopes was stronger than the present value by ~23% (or 0.15 mieq a−1) prior to ~1100 years ago. Since then, this contrast has been decreasing overall. We surmise that these SMB changes are likely a result of synoptic-scale atmospheric changes, rather than local atmospheric changes controlled by local ice topography. Our technique effectively assimilates geophysical data, avoiding the complexity of ice flow beneath the ice divide. Thus, it could be applied to other ice rises to elucidate the recent glacial retreat.
-
The ice-shelf-fringed coast of Dronning Maud Land in East Antarctica contains numerous ice rises that influence the dynamics and mass balance of the region. However, only a few of these ice rises have been investigated in detail. Here, we present field measurements of Blåskimen Island, an isle-type ice rise adjacent to Fimbul Ice Shelf. This ice rise is largely dome shaped, with a pronounced ridge extending to the south-west from its summit (410 m a.s.l.). Its bed is mostly flat and about 100 m below the current sea level. Shallow radar-detected isochrones dated with a firn core reveal that the surface mass balance is higher on the south-eastern (upwind) slope than on the north-western (downwind) slope by ∼ 37 %, and this pattern has persisted for at least the past decade. Moreover, arches in radar stratigraphy suggest that the summit of the ice rise has been stable for ∼ 600 years. Ensemble estimates of the mass balance using the input–output method show that this ice rise has thickened by 0.12–0.37 m ice equivalent per year over the past decade.
-
Ice rises play key roles in buttressing the neighbouring ice shelves and potentially provide palaeoclimate proxies from ice cores drilled near their divides. Little is known, however, about their influence on local climate and surface mass balance (SMB). Here we combine 12 years (2001–12) of regional atmospheric climate model (RACMO2) output at high horizontal resolution (5.5 km) with recent observations from weather stations, ground-penetrating radar and firn cores in coastal Dronning Maud Land, East Antarctica, to describe climate and SMB variations around ice rises. We demonstrate strong spatial variability of climate and SMB in the vicinity of ice rises, in contrast to flat ice shelves, where they are relatively homogeneous. Despite their higher elevation, ice rises are characterized by higher winter temperatures compared with the flat ice shelf. Ice rises strongly influence SMB patterns, mainly through orographic uplift of moist air on the upwind slopes. Besides precipitation, drifting snow contributes significantly to the ice-rise SMB. The findings reported here may aid in selecting a representative location for ice coring on ice rises, and allow better constraint of local ice-rise as well as regional ice-shelf mass balance.
-
Soloppvarmet overflatevann er en sentral varmekilde som bidrar til smelting av isbremmen Fimbulisen i Dronning Maud Land.
-
Radar power returned from the basal interface along a 42 km long profile over an ice-rise promontory and the adjacent Roi Baudouin ice shelf, Dronning Maud Land, East Antarctica, is analyzed to infer spatial variations in basal reflectivity and hence the basal environment. Extracting basal reflectivity from basal returned power requires an englacial attenuation model. We estimate attenuation in two ways: (1) using a temperature-dependent model with input from thermomechanical ice-flow models; and (2) using a radar method that linearly approximates the geometrically corrected returned power with ice thickness. The two methods give different results. We argue that attenuation calculated using a modeled temperature profile is more robust than the widely used radar method, especially in locations where depth-averaged attenuation varies spatially or where the patterns of basal reflectivity correlate with the patterns of the ice thickness.
-
The mass balance of the Antarctic ice cap, its stability, and the role of the surrounding ice shelf in bottomwater mass formation is, to a large extent, dictated by processes associated with subsurface freezing and melting, where the submerged ice meets the surrounding ocean. It is demonstrated how multifrequency ground-penetrating radar data collected at the Riiser-Larsenisen can be used to examine the physical conditions of the ice-shelf subsurface. The received radar signal from three different frequency intervals, 10-30, 155-170, and 330-360 MHz (range of wavelengths from 15 to 0.5 m in the ice), was analyzed by using a plane reflector model. It is demonstrated that the data can be successfully used to distinguish between types of ice at the ice-ocean interface, such as for freezing marine ice, melting marine ice, melting meteoric ice from the ice cap, and melting firn/ice. The data analysis shows that the subsurface can be regarded as rough on length scales in the order of 1 m.
Explore
Topic
- isshelf
- AABW (1)
- Antarktis (9)
- brehylle (3)
- bunnvannet (1)
- Dronning Maud Land (12)
- ekspedisjoner (3)
- fjernanalyse (1)
- forskning (1)
- geofysikk (1)
- georadar (1)
- glasiologi (22)
- havis (2)
- innlandsis (2)
- is (1)
- isberg (1)
- isbreer (2)
- isbrem (3)
- isfjell (3)
- isfront (2)
- isstrøm (1)
- kalv (1)
- kalving (4)
- klima (3)
- kontinentalsokkel (1)
- Maudheimekspedisjonen (2)
- morfologi (1)
- NARE 1976/77 (2)
- NARE 1978/79 (1)
- NBSAE 1949-52 (2)
- Norsk-britisk-svenske antarktisekspedisjon (2)
- NSBX 1949-52 (2)
- oseanografi (3)
- sjøis (1)
- sjøvann (1)
- Sørishavet (15)
- stratigrafi (2)
- topografi (1)
- Weddellhavet (1)
Resource type
- Book (1)
- Book Section (3)
- Journal Article (19)
Publication year
-
Between 1900 and 1999
(10)
-
Between 1950 and 1959
(1)
- 1958 (1)
-
Between 1960 and 1969
(1)
- 1961 (1)
- Between 1970 and 1979 (4)
- Between 1980 and 1989 (2)
- Between 1990 and 1999 (2)
-
Between 1950 and 1959
(1)
-
Between 2000 and 2025
(13)
-
Between 2000 and 2009
(3)
- 2008 (3)
- Between 2010 and 2019 (7)
- Between 2020 and 2025 (3)
-
Between 2000 and 2009
(3)