Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 63 resources
-
Fluid infiltration into Proterozoic and Early Palaeozoic dry, orthopyroxene-bearing granitoids and gneisses in Dronning Maud Land, Antarctica, has caused changes to rock appearance, mineralogy, and rock chemistry. The main mineralogical changes are the replacement of orthopyroxene by hornblende and biotite, ilmenite by titanite, and various changes in feldspar structure and composition. Geochemically, these processes resulted in general gains of Si, mostly of Al, and marginally of K and Na but losses of Fe, Mg, Ti, Ca, and P. The isotopic oxygen composition (δ18OSMOW = 6.0‰–9.9‰) is in accordance with that of the magmatic precursor, both for the host rock and infiltrating fluid. U-Pb isotopes in zircon of the altered and unaltered syenite to quartz-monzonite indicate a primary crystallization age of 520.2 ± 1.0 Ma, while titanite defines alteration at 485.5 ± 1.4 Ma. Two sets of gneiss samples yield a Rb-Sr age of 517 ± 6 Ma and a Sm-Nd age of 536 ± 23 Ma. The initial Sr and Nd isotopic ratios suggest derivation of the gneisses from a relatively juvenile source but with a very strong metasomatic effect that introduced radiogenic Sr into the system. The granitoid data indicate instead a derivation from Mid-Proterozoic crust, probably with additions of mantle components.
-
The East Antarctic Ice Sheet (EAIS) is generally assumed to have been relatively insensitive to Quaternary climate change. However, recent studies have shown potential instabilities in coastal, marine sectors of the EAIS. In addition, long-term climate reconstructions and modelling experiments indicate the potential for significant changes in ice volume and ice sheet configuration since the Pliocene. Hence, more empirical evidence for ice surface and ice volume changes is required to discriminate between contrasting inferences. MAGIC-DML is an ongoing Swedish-US-Norwegian-German-UK collaboration focused on improving ice sheet models by filling critical data gaps that exist in our knowledge of the timing and pattern of ice surface changes along the western Dronning Maud Land (DML) margin and combining this with advances in numerical techniques. Here, we report cosmogenic multi-nuclide data from bedrock and erratics at 72 sample locations on nunatak ranges from Heimefrontfjella to along Penck-Jutulstraumen ice stream throughs in western Dronning Maud Land. The sample locations span elevations between 741-2437 m above sea level, and record apparent exposure ages between <2 ka and >5 Ma. The highest bedrock samples, from high on the inland nunatak ranges, indicate continuous exposure since >5 Ma, with a very low erosion rate of 15±3 cm Ma-1. These results indicate that the ice sheet has not extensively buried and eroded these mountain ranges since at least the Pliocene Moreover, and in contrast to current studies in eastern Dronning Maud Land, we record clear indications of a thicker-than-present ice sheet along the Penck-Jutulstraumen throughs within the last glacial cycle, with a thinning of ~35-120 m towards the present ice surface on several nunataks during the Holocene (~2-11 ka). These results thus indicate ice-surface fluctuations of several hundred meters between the current grounding line and the edge of the polar plateau for the last glacial cycle.
-
Dronning Maud Land in East Antarctica represents the central part of the Gondwana supercontinent. Geological mapping and investigation of Dronning Maud Land have been carried out over the last 40-50 years. The existing geological maps of Dronning Maud Land are, for a large part, based on fairly old data, which makes these maps inhomogeneous. The maps are at different scales, contain different levels of details, and the standards for classification of the rock units may also differ between the maps. This limits the ability to use these map to draw an overview tectonic model of the evolution of Dronning Maud Land. Moreover, the existing topographic dataset from Dronning Maud Land is based on fairly old topographic maps (1960s), and there is a discrepancy between the topographic dataset and the more recent Landsat images. There are still unmapped areas.
-
The geology of East Antarctica and its correlation in major supercontinents is highly speculative, since only a very small part of it is exposed. Therefore a better connection between geology and geophysics is needed in order to correlate exposed regions with ice-covered, geophysically-defined, blocks. In Dronning Maud Land (DML), two distinct late Mesoproterozoic/early Neoproterozoic tectono-metamorphic provinces appear, separated by the major, NE-trending Forster Magnetic Anomaly and South Orvin Shear Zone. To the west of this lineament, the Maud Belt has clear affinities with Grenville-age continent-continent mobile belts. East of the Forster Magnetic Anomaly, juvenile rocks with early Neoproterozoic age (Rayner-age) and an accretionary character crop out. The international GEA-II expedition (2012) targeted a white spot on the geological map immediately to the E of the Forster Magnetic Anomaly. This area allows the characterization and ground-truthing of a large and mostly ice-covered region, the SE DML Province that had previously been interpreted as an older cratonic block. However, new SHRIMP/SIMS zircon analyses and their geochemistry indicates that the exposed basement consists of a ca. 1000-900 Ma juvenile terrane that is very similar to rocks in Sor Rondane. It lacks significant metamorphic overprint at the end of crust formation, but it shows medium to high-grade overprinting between ca. 630-520 Ma, associated with significant felsic melt production, including A-type granitoid magmatism. Therefore, the aeromagnetically distinct SE DML province does neither represent the foreland of a Late Neoproterozoic/EarlyPaleozoic mobile belt, nor a craton, as has previously been speculated. It more likely represents the more juvenile, westward continuation of Rayner-age crust (1000-900 Ma). To the west it abuts along the NE-trending Forster Magnetic Anomaly. The latter is interpreted as a suture, which separates typical Grenville-age crust of the Maud Belt (ca. 1200-1030 Ma) to the W from Rayner-age crust to the E. Therefore the larger eastern part of DML has clearly Indian affinities. Its juvenile character with a lack of metamorphic overprint at the end of crust formation points to an accretionary history along this part of the Indian segment of Rodinia, immediately following final Rodinia assembly.
-
The West Antarctic Ice Sheet (WAIS) is considered the most unstable part of the Antarctic Ice Sheet. As the WAIS is mostly grounded below sea level, its stability is of great concern. A collapse of large parts of the WAIS would result in a significant global sea-level rise. At present, the WAIS shows dramatic ice loss in its Amundsen Sea sector, especially in Pine Island Bay. Pine Island Glacier (PIG) is characterised by fast flow, major thinning and rapid grounding-line retreat. Its mass los over recent decades is generally attributed to melting caused by the inflow of warm Circumpolar Deep Water (CDW). Future melting of PIG may result in a sea level tipping point, because it could trigger widespread collapse of the WAIS, especially when considering ongoing climate change.
-
The West Antarctic Ice Sheet (WAIS) is considered the most unstable part of the Antarctic Ice Sheet. As the WAIS is mostly grounded below sea level, its stability is of great concern. A collapse of large parts of the WAIS would result in a significant global sea-level rise. At present, the WAIS shows dramatic ice loss in its Amundsen Sea sector, especially in Pine Island Bay. Pine Island Glacier (PIG) is characterised by fast flow, major thinning and rapid grounding-line retreat. Its mass los over recent decades is generally attributed to melting caused by the inflow of warm Circumpolar Deep Water (CDW). Future melting of PIG may result in a sea level tipping point, because it could trigger widespread collapse of the WAIS, especially when considering ongoing climate change.
-
The geology of Sør Rondane has been the focus of intense research and occupies a key position for reconstructing the late Neoproterozoic to early Paleozoic geodynamic evolution in eastern Dronning Maud Land (DML). Sør Rondane appears to be located close to the supposed intersection of the East African-Antarctic Orogen (EAAO) and the Kuunga Orogen. The western part of Sør Rondane is subdivided in two distinct terranes. The amphibolite to granulite-facies NE terrane is mainly composed of metasupracrustal rocks, with detrital zircon ages in part younger than 750 Ma, deposited on older basement of unknown, possibly Rayner-type, crust (Shiraishi et al., 2008). Metamorphism has been dated by U-Pb on zircon at ca. 640-600 Ma and amphibolite-facies retrogression dated at ca. 590-530 Ma. The SW terrane is subdivided by the Main Shear Zone (MSZ) into two lithothectonic units, i.e. Pan- African greenschist- to granulite-facies metamorphic rocks with “East African” affinities in the N and a Rayner-age early Neoproterozoic gabbro-tonalite-trondhjemite-granodiorite (GTTG) complex with “Indo-Antarctic” affinities in the S. The GTTG complex has suffered Pan-African greenschist- to lower amphibolite-facies thermal overprint, but also contains large domains with only weak deformation except for its northern margin close to the MSZ. The deformation there is related to high shear strain along this structure. New zircon crystallisation ages of the GTTG cluster around 1000-930 Ma. It is interpreted to have formed along a juvenile oceanic arc, in which the wide age range might indicate a long-lasting accretionary orogen. The MSZ is characterized by a right-lateral sense of movement and high-strain ductile deformation under peak amphibolite-facies conditions. The structure can be traced over a distance of ca. 120 km between Lågkollane in the W and Lunckeryggen in the E and reaches several hundred meters in width. The MSZ cannot be traced further to the W where it seems to terminate at the north-eastern border of the NW-SE oriented prominent magnetically defined SE DML Province. The north-eastern border zone may coincide with a significant dextral shear zone that runs from the Schirmacher Oasis into the region S of Sør Rondane (Schirmacher- Rondane Lineament). The SE DML Province most likely consists of Rayner-age (1000-900 Ma) crust with evidence of intense Pan-African reworking indicated by new geochronological data and was part of a large Tonian Oceanic Arc Super Terrane (TOAST). The continuation of the MSZ into eastern Sør Rondane and beyond is not clear either, since it appears to terminate at a N-S oriented region with low magnetic signatures (central Sør Rondane corridor) that is possibly related to extensional tectonics. Crosscutting relationships with dated magmatic rocks bracket the activity of the MSZ between Latest Ediacaran to Cambrian times (c. 560- 530 Ma). Based on new combined aeromagnetic and structural results from a four-seasons survey of the greater Sør Rondane region, we propose that the crustal structural architecture of eastern DML and is strongly influenced by N-directed (with Africa/Antarctica restored to its original position in Gondwana) lateral extrusion of the EAAO. This process was likely driven by the combination of (i) indentation of the SE DML block towards the conjugate stable Kalahari- Grunehogna cratonic foreland, (ii) extensional collapse of the previously (c. 580-550 Ma) thickened and gravitational instable crust of central DML, and (iii) large-scale tectonic escape of crustal blocks in eastern DML along major shear zones such as the Schirmacher Rondane Lineament and MSZ towards an unconstrained yet unknown region at a lateral position of the EAAO.
-
The paleo-topography of East Antarctica is highly relevant for the development of the East Antarctic ice-sheet. This ice-sheet originated probably as small ice caps and in the elevated areas of the cratons in East Antarctica around the Eocene/Oligocene boundary. East Antarctica contains three mountain ranges: the latitudinal Dronning Maud Land Mountains (DML), the longitudinal Transantarctic Mountains (TAM) and the sub-glacial Gamburtsev Mountains (GM). The 1500 km long, coast-parallel Dronning Maud Land Mountains probably resulted in a significant amount of precipitation prior to the initiation of the 34 Ma glaciation history of East Antarctica. Thus, the paleo-topography should be used as an important input parameter for the glaciation history.
-
East Antarctica probably formed by amalgamation of a number of cratons along distinct Ediacaran mobile belts, including the ca. 600-500 Ma East African-Antarctic Orogen (EAAO) that dissects Dronning Maud Land (DML). New field-work during the international expeditions Geodynamic Evolution of East Antarctica (GEA) I + II in the austral summers 2010/11 and 2011/12, and first geochronological results from eastern DML reveal a complex tectonic architecture across the belt. In western DML, the EAAO reworks older Mesoproterozoic crust of the Maud Belt; the westernmost boundary of the mobile belt is characterized by a major dextral transpressional shear zone. In central DML, a major magnetic anomaly, the Forster anomaly, was interpreted as a cryptic suture of the EAAO (Riedel et al. 2012). The area where the Forster anomaly crosses the DML mountains is poorly investigated so far, but appears to coincide with a major strike slip shear zone in the southern Kurze Mts. and the occurrence of major Ediacaran granulite bodies. East of the Forster anomaly, the magnetic anomaly pattern changes significantly and typical Maud type crust is not present any longer. GEA II targeted a range of nunataks between Sør Rondane and central DML that had never been visited previously (from Blåklettane and Bergekongen in the E to Urna and Sørsteinen in the W). These nunataks are dominated by medium- to high-grade metasedimentary and metavolcanic rocks of possibly Neoproterozoic age, including abundant marble and graphite schists. Sør Rondane in eastern DML, is dominated by two distinct blocks separated by the dextral Main Shear Zone. The northwestern block is still part of the eastern EAAO, where new SHRIMP zircon data from metamorphic rims provide ages of ca. 560 Ma. The southeastern block is made up of a TTG terrane, which provides four new SHRIMP zircon dates between 990-980 Ma, interpreted as igneous crystallization ages (oceanic arc). The TTG terrane shows limited tectonic overprint and is likely the southeastern foreland of the EAAO. Close to the contact of the two blocks grey geisses and augen-gneisses gave zircon crystallization ages of ca. 750 Ma, ages which were previously unknown from the EAAO. The Forster anomaly therefore separates distinctly different parts of the EAAO: a) a reworked, mainly Grenville-age crust to the W (the overprinted margin of the Kalahari Craton) and b) a part of the orogen dominated by Neoproterozoic accretionary tectonics to the E. This difference is also reflected in the geochemistry of voluminous late-tectonics granitoids across the belt.
-
Central Dronning Maud Land (CDML) in East Antarctica is an important region for understanding Rodinia and Gondwana supercontinent cycles. Zircon U-Pb dating and Hf-O isotopic data revealed by extensive sampling across CDML provide constraints on the timing and source of main magmatism and new insights into the crustal composition and evolution. SIMS zircon U-Pb ages indicate multi-stage magmatic activities from Mesoproterozoic to Cambrian times at 1160-1130 Ma, 1115-1100 Ma, 1090-1070 Ma, 780-750 Ma, 645-600 Ma and 530-485 Ma, as well as Mesoproterozoic metamorphism at 1085-1050 Ma recorded by zircon rims. This region was subjected a large-scale and long-lasting high-grade metamorphism during 600-500 Ma. Most 1160-1080 Ma granitic rocks exhibit εHf (t) values ranging from +5 and +8 and δ18O slightly higher than mantle value (6-7 ‰), indicating a main derivation from juvenile crust. The involvement of Paleoproterozoic continental materials, which were most likely from adjacent Kalahari Craton, is attested by minor samples with negative to neutral εHf (t) and significantly elevated δ18O values (8-10 ‰). The late Neoproterozoic (750-600 Ma) rocks, including anorthosite, charnockite and granite, display an evolved Hf isotopic composition and high δ18O values (7.5-9 ‰), suggesting a significant addition of crust-derived materials into the source. The data imply that in CDML, late Mesoproterozoic (Grenville-age) magmatism during the assembly of Rodinia is dominated by the addition of new crust with subordinate reworking of ancient crust. Subsequent subduction process associated with the break-up of Rodinia and assembly of Gondwana largely witnessed recycling of previous continental components. Combined with whole-rock geochemistry, it is speculated that the accretionary process along the Maud margin of Kalahari Craton lasted from the Mesoproterozoic, across the late Tonian (750 Ma) until Ediacaran to suture west and east Gondwana blocks.
-
Granulite-facies metamorphism is extensively reported in Late Neoproterozoic/Early Palaeozoic time during formation of the East-African-Antarctic orogen (EAAO). Metamorphic data acquired from the Pan-African orogen of central Dronning Maud Land (cDML) are compared with data from northern Mozambique. The metamorphic rocks of cDML are characterised by Opx±Grt-bearing gneisses and Sil+Kfs-bearing metapelites which indicate medium-P granulite-facies metamorphism. Peak conditions, which are estimated to 800-900ºC at pressures up to 1.0 GPa, were followed by near-isothermal decompression during late Pan-African extension and exhumation. Granulite-facies lithologies are widespread in northern Mozambique, and Grt+Cpx-bearing assemblages show that high-P granulitefacies conditions with PT reaching 1.55 GPa and 900ºC were reached during the Pan-African orogeny. Garnet is replaced by symplectites of Pl+Opx+Mag indicating isothermal decompression, and the subsequent formation of Pl+amphibole-coronas suggests cooling into amphibolite facies. It is concluded that high-T metamorphism was pervasive in EAAO in Late Neoproterozoic/Early Paleozoic time, strongly overprinting evidences of earlier metamorphic assemblages.
Explore
Topic
- geologi
- Antarktis (23)
- Antarktistraktaten 1959 (1)
- astronomi (1)
- biografi (1)
- biografier (3)
- biologi (1)
- botanikk (4)
- Bouvetøya (5)
- Carsten Borchgrevink (3)
- Carsten Egeberg Borchgrevink (1)
- Den norske antarktisekspedisjonen 1956–1960 (1)
- Det internasjonale geofysiske år 1957/58 (1)
- Det internasjonale geofysiske år (IGY) 1957/1958 (1)
- Dronning Maud Land (27)
- ekspedisjonen (5)
- ekspedisjoner (17)
- forskning (13)
- forskningsprogram (1)
- første landgang (3)
- fysikk (1)
- geodesi (1)
- geofysikk (8)
- geografi (3)
- geokjemi (6)
- geokronologi (2)
- glasiologi (8)
- havbunnen (3)
- havis (1)
- havrett (1)
- IGY 1957-58 (1)
- innlandsis (3)
- internasjonal (1)
- jordmagnetiske målinger (1)
- jordmagnetisme (1)
- Kapp Adare (3)
- kart (1)
- kartlegging (2)
- klimaendringer (2)
- klimatologi (1)
- konferanse (2)
- kongress (1)
- kontinentalmargin (1)
- marin biologi (1)
- marin geofysikk (2)
- marin geologi (1)
- maringeologi (1)
- Maudheimekspedisjonen (5)
- meteorologi (6)
- mineraler (2)
- mineralogi (2)
- NARE 1976/77 (4)
- NARE 1996/97 (1)
- NARE ekspedisjoner (2)
- NAX (1)
- NBSAE 1949-52 (5)
- Norsk-britisk-svenske antarktisekspedisjon (5)
- Norvegia ekspedisjonen (1)
- Norvegia ekspedisjoner (2)
- NSBX 1949-52 (6)
- oppdagelsesreiser (5)
- ornitologi (1)
- oseanografi (4)
- overvintring (6)
- Peter I. Øy (1)
- petrografi (1)
- petrologi (7)
- polarekspedisjoner (5)
- polarområdene (2)
- ressurser (2)
- seismologi (4)
- Sørishavet (9)
- Southern Cross (5)
- Sydpolen (3)
- symposium (3)
- tektonikk (2)
- termokronologi (1)
- Thorshavn ekspedisjon (1)
- tidevannsmålinger (1)
- topografi (2)
- vitenskap (1)
- vulkaner (2)
- Weddellhavet (5)
- zoologi (5)
Resource type
- Book (7)
- Book Section (14)
- Conference Paper (14)
- Document (5)
- Journal Article (19)
- Manuscript (1)
- Report (2)
- Thesis (1)
Publication year
-
Between 1900 and 1999
(40)
- Between 1900 and 1909 (2)
-
Between 1930 and 1939
(1)
- 1930 (1)
- Between 1940 and 1949 (3)
- Between 1950 and 1959 (4)
- Between 1960 and 1969 (5)
- Between 1970 and 1979 (8)
- Between 1980 and 1989 (12)
- Between 1990 and 1999 (5)
- Between 2000 and 2025 (23)