Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 35 resources
-
Visible and near-infrared spectral reflectances of snow and superimposed ice were measured in Dronning Maud Land, Antarctica, during the 1992-93 austral summer. Spectral-reflectance curves of both snow and superimposed ice remain high ( > 80%) in the visible region. A pronounced decrease in reflectance appears in the near-infrared, especially for superimposed ice. Superimposed ice with a 1 cm thick surface layer of ice-bound snow crystals had a considerably higher reflectance than superimposed ice containing only a few snow crystals. Furthermore, these data prove that snow and superimposed ice reflect solar radiation specularly and suggest that the anisotropy strengthens with increasing wavelengths. Integrated in-situ reflectances corresponding to Landsat TM bands 1-4 show that TM band 1 is least affected, whereas TM band 4 is most affected by anisotropy. Furthermore, the anisotropy increases with increasing off-nadir viewing angles up to an angle corresponding to 90°-θs (θs = solar elevation). For a 15° off-nadir sensor-observation angle, the average snow reflectance for TM bands 1--4 is about 10% higher than at nadir. Similarly, the apparent reflectance can be more than 50% higher than the nadir reflectance for larger observation angles. Consequently, if satellite-derived reflectances are going to be considered as absolute values, a topographic-correction model is needed to correct for the effects of anisotropy.
-
This paper presents modeled surface and subsurface melt fluxes across near-coastal Antarctica. Simulations were performed using a physical-based energy balance model developed in conjunction with detailed field measurements in a mixed snow and blue-ice area of Dronning Maud Land, Antarctica. The model was combined with a satellite-derived map of Antarctic snow and blue-ice areas, 10 yr (1991–2000) of Antarctic meteorological station data, and a high-resolution meteorological distribution model, to provide daily simulated melt values on a 1-km grid covering Antarctica. Model simulations showed that 11.8% and 21.6% of the Antarctic continent experienced surface and subsurface melt, respectively. In addition, the simulations produced 10-yr averaged subsurface meltwater production fluxes of 316.5 and 57.4 km3 yr−1 for snow-covered and blue-ice areas, respectively. The corresponding figures for surface melt were 46.0 and 2.0 km3 yr−1, respectively, thus demonstrating the dominant role of subsurface over surface meltwater production. In total, computed surface and subsurface meltwater production values equal 31 mm yr−1 if evenly distributed over all of Antarctica. While, at any given location, meltwater production rates were highest in blue-ice areas, total annual Antarctic meltwater production was highest for snow-covered areas due to its larger spatial extent. The simulations also showed higher interannual meltwater variations for surface melt than subsurface melt. Since most of the produced meltwater refreezes near where it was produced, the simulated melt has little effect on the Antarctic mass balance. However, the melt contribution is important for the surface energy balance and in modifying surface and near-surface snow and ice properties such as density and grain size.
-
Satellite remote sensing is a convenient tool for studying snow and glacier ice, allowing us to conduct research over large and otherwise inaccessible areas. This paper reviews various methods for measuring snow and glacier ice properties with satellite remote sensing. These methods have been improving with the use of new satellite sensors, like the synthetic aperture radar (SAR) during the last decade, leading to the development of new and powerful methods, such as SAR interferometry for glacier velocity, digital elevation model generation of ice sheets, or snow cover mapping. Some methods still try to overcome the limitations of present sensors, but future satellites will have much increased capability, for example, the ability to measure the whole optical spectrum or SAR sensors with multiple polarization or frequencies. Among the methods presented are the satellite-derived determination of surface albedo, snow extent, snow volume, snow grain size, surface temperature, glacier facies, glacier velocities, glacier extent, and ice sheet topography. In this review, emphasis is put on the principles and theory of each satellite remote sensing method. An extensive list of references, with an emphasis on studies from the 1990s, allows the reader to delve into specific topics.
-
We have mapped Antarctic blue-ice areas using the U.S. National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) Antarctica cloud-free image mosaic established by the United States Geological Survey. The mosaic consists of 38 scenes acquired from 1980 to 1994. Our results show that approximately 60 000 km2 of blue ice exist for each of the two main types of blue ice: “melt-induced” and “wind-induced”. Normally, the former type is located on slopes in coastal areas where climate conditions (i.e. persistent winds and temperature), together with favourable surface orientation, sustain conditions for surface and near surface melt. The latter blue-ice category occurs near mountains or on outlet glaciers, often at higher elevations, where persistent winds erode snow away year-round, and combined with sublimation creates areas of net ablation. Furthermore, we have identified an additional area of 121 000 km2 as having potential for blue ice. However, in these areas features such as mixed pixels, glazed snow surfaces, crevasses and/or shadows make interpretation more uncertain. In conclusion, a conservative estimate of Antarctic blue-ice area coverage by this method is found to be 120 000 km2 (∼0.8% of the Antarctic continent), with a potential maximum of 241 000 km2 (∼1.6% of the Antarctic continent).
-
Large-scale melting phenomena such as meltwater drainage channels and meltwater accumulation basins of frozen lakes were surveyed on the land ice mass in Jutulgryta, Dronning Maud Land, Antarctica, during the Norwegian Antarctic Research Expedition in 1989–90 (NARE 1989–90). The largest frozen lake that was observed was close to 1 km in width. These melting features were also detected in a Landsat Thematic Mapper image recorded on 12 February 1990. Then, during NARE 1993–94, a 5year glaciological programme was started in this area. In spite of negative air temperatures and the presence of a frozen ice surface, sub-surface melting and runoff were found within the uppermost metre in blue-ice fields. The sub-surface melting is a consequence of solar radiative penetration and absorption within the ice, i.e. the “solid-state-greenhouse effect”. Temperatures in blue ice were about 6°C higher than for snow. Internal melt and meltwater transport were observed throughout the 1 month of measurements. The conditions for active melting in Jutulgryta are probably marginal. A slight increase of air temperatures can result in more “classical” surface melting, whereas a cooling may disable sub-surface melting. Studies of how the extent and characteristics of the melting features change with time can be particularly valuable as indicators of climate change. This ongoing programme clearly identifies the importance of analyzing how these melting features originate, of mapping their present areal distribution, of determining how sensitive they are to climate change and of Studying changes in the past and possible changes in the future.
-
In the near coastal regions of Dronning Maud Land, Antarctica, below-surface ice-melt in blue-ice areas has been observed. The low scattering coefficients of the large-grained blue-ice allow penetration of solar radiation, thus providing an energy source below the ice surface. The sub-surface meltwater is significant enough to show up on remote-sensing imagery in the form of ice-covered lakes. Adjacent snow-accumulation areas have much higher scattering coefficients and consequently limit solar radiation penetration in these regions. These snow and ice surfaces are generally below freezing, and little surface melting occurs. To assess the response of these melt features to changes in atmospheric forcings such as cloudiness, air temperature, and snow accumulation, a physically-based model of the coupled atmosphere, radiation, snow, and blue-ice system has been developed. The model consists of a heat transfer equation with a spectrally-dependent solar-radiation source term. The penetration of radiation into the snow and blue-ice depends on the surface albedo, and the snow and blue-ice grain size and density. Model simulations show that ice melt occurring in this area is sensitive to potential variations in atmospheric forcing. Under certain conditions more traditional surface melting occurs and, under other conditions, the existing melt processes can be shut down completely. In light of the sensitivity of this system to variations in atmospheric forcing, and the ability to view melt-related features using remote sensing, a tool exists to efficiently monitor variations in Antarctic coastal climate.
-
In the Jutulgryta area of Dronning Maud Land, Antarctica, subsurface melting of the ice sheet has been observed. The melting takes place during the summer months in blue-ice areas under conditions of below-freezing air and surface temperatures. Adjacent snow-covered regions, having the same meteorological and climatic conditions, experience little or no subsurface melting. To help explain and understand the observed melt-rate differences in the blue-ice and snow-covered areas, a physically based numerical model of the coupled atmosphere, radiation, snow and blue-ice system has been developed. The model comprises a heat-transfer equation which includes a spectrally dependent solar-radiation source term. The penetration of radiation into the snow and blue ice depends on the solar-radiation spectrum, the surface albedo and the snow and blue-ice grain-sizes and densities. In addition, the model uses a complete surface energy balance to define the surface boundary conditions. It is run over the full annual cycle, simulating temperature profiles and melting and freezing quantities throughout the summer and winter seasons. The model is driven and validated using field observations collected during the Norwegian Antarctic Research Expedition (NARE) 1996–97. The simulations suggest that the observed differences between subsurface snow and blue-ice melting can be explained largely by radiative and heat-transfer interactions resulting from differences in albedo, grain-size and density between the two mediums.
-
A detailed and comprehensive map of the distribution patterns for both natural and artificial radionuclides over Antarctica has been established. This work integrates the results of several decades of international programs focusing on the analysis of natural and artificial radionuclides in snow and ice cores from this polar region. The mean value (37±20 Bq m−2) of 241Pu total deposition over 28 stations is determined from the gamma emissions of its daughter 241Am, presenting a long half-life (432.7 yrs). Detailed profiles and distributions of 241Pu in ice cores make it possible to clearly distinguish between the atmospheric thermonuclear tests of the fifties and sixties. Strong relationships are also found between radionuclide data (137Cs with respect to 241Pu and 210Pb with respect to 137Cs), make it possible to estimate the total deposition or natural fluxes of these radionuclides. Total deposition of 137Cs over Antarctica is estimated at 760 TBq, based on results from the 90–180° East sector. Given the irregular distribution of sampling sites, more ice cores and snow samples must be analyzed in other sectors of Antarctica to check the validity of this figure.
-
Grain-size is an important but not well-known characteristic of snow at the surface of Antarctica. In the past, grain-size has been reported using various methods, the reliability, reproducibility and intercomparability of which is not warranted. In this paper, we present and recommend, depending on available logistical support, three techniques of snow-grain sampling and/or imaging in the field as well as an original digital image-processing method, which we have proved provides reproducible and intercomparable measures of a snow grain-size parameter, the mean convex radius. Results from more than 500 samples and 3000 images of snow grains are presented, which yield a still spatially limited yet unprecedentedly wide picture of near-surface snow grain-size distribution from fieldwork in Antarctica. In particular, except at sites affected by a very particular meteorology, surface grains in the interior of the ice sheet are uniformly small (0.1–0.2 mm). The climate-related increase of grain-size with depth through metamorphism is, as expected, not spatially uniform. Our Antarctic snow grain-size database will continue to grow as field investigations bring new samples, images and measures of snow grain.
-
Surface patterns of alternating snow and blue-ice bands are found in the Jutulgryta area of Dronning Maud Land, Antarctica. The snow-accumulation regions exist in the lee of blue-ice topographic ridges aligned perpendicular to winter winds. The snow bands are c. 500–2000 m wide and up to several kilometres long. In Jutulgryta, these features cover c. 5000 km2. These alternating snow and blue-ice bands are simulated using a snow transport and redistribution model, SnowTran-3D, that is driven with a winter cycle of observed daily screen-height air temperature, humidity, and wind speed and direction. The snow-transport model is coupled to a wind model that simulates wind flow over the relatively complex topography. Model results indicate that winter winds interact with the ice topographic features to produce alternating surface patterns of snow accumulation and erosion. In addition, model sensitivity simulations suggest that subtle topographic variations, on the order of 5m elevation change over a horizontal distance of 1 to 1.5 km, can lead to snow-accumulation variations that differ by a factor of six. This result is expected to have important consequences regarding the choice of sites for ice-coring efforts in Antarctica and elsewhere.
-
During 1996-97 a European Project for Ice Goring in Antarctica (EPIGA) pre-site surveying traverse worked in the area between 70° S, 5° E and 75° S, 15° E in Dronning Maud Land. We present data obtained from 10 and 20 m deep firn cores drilled between the coast and 600 km inland (to 3450 m a.s.l.). The cores were analyzed for electrical conductivity measurements and total β activity to obtain accumulation data between known time horizons. In addition, some of the cores were analyzed for oxygen isotopes. Annual accumulation varies from 271 mm we. at Fimbulisen to 24 mm we at 2840 m a.s.l. Accumulation at core sites 2400-3000 m a.s.l. has increased by 16-48% since 1965 compared to the 1955-65 period. However, the core sites above 3250 m a.s.l. and one core location on the ice shelf show a decrease during the same period. Furthermore, no change can be detected at the most inland site for the period 1815-1996. In all the cores the last few years seem to have been some of the warmest in these records.
Explore
Topic
- akkumulasjon (1)
- Antarktis (12)
- atmosfæren (2)
- blåis (5)
- Dronning Maud Land (25)
- fjernanalyse (1)
- fjernmåling (1)
- forsking (1)
- fysisk geografi (1)
- gasskonsentrasjoner (2)
- geofysikk (10)
- geologi (1)
- geovitenskap (2)
- glasiokjemi (1)
- glasiologi (30)
- innlandsis (5)
- isbre (1)
- isbreer (1)
- iskjerner (8)
- isshelf (1)
- isstrøm (1)
- klima (2)
- klimaendringer (1)
- klimagasser (1)
- klimamodeller (1)
- klimatologi (6)
- logistikk (1)
- meteorologi (3)
- NARE 1989/90 (1)
- NARE 1993/94 (2)
- NARE 1996/97 (3)
- NARE 2000/01 (2)
- observasjoner (1)
- paleoklimatologi (4)
- radar observasjoner (1)
- radioaktivitet (1)
- satellite bilder (2)
- satellittbilder (1)
- satellitteknologi (1)
- smelting (1)
- stratigrafi (1)
- subglasial innsjø (1)
- teknologi (1)
- transantarktiske ekspedisjoner (1)
- vulkaner (1)
Resource type
Publication year
- Between 1900 and 1999 (12)
- Between 2000 and 2025 (23)