Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 5 resources
-
Levels of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) as well as of coplanar (non-ortho substituted) polychlorinated biphenyls (CB-77, CB-126 and CB-169) have been determined in 11 fur-seal blubber samples from female Antarctic fur seals. Measurable PCDD/PCDF concentrations averaging 2 ppt TEQ (Nordic model) were found. This is considerably less than in Arctic seals. In addition, the PCDD/PCDF congener patterns differed between Antarctic and Arctic seals. The levels of CB-77, CB-126 and CB-169 (8.5-41 pg g-1 for single congeners in average) in Antarctic fur seals were also much lower than in Arctic ringed and harp seals. A possible explanation of these differences is the overall lower environmental pollution of the Southern Hemisphere, though an influence of different age and sex distributions cannot be excluded. The data passed all quality assurance criteria that had been established for such low levels.
-
Q1, an organochlorine component with the molecular formula C(9)H(3)Cl(7)N(2) and of unknown origin was recently identified in seal blubber samples from the Namibian coast (southwest of Africa) and the Antarctic. In these samples, Q1 was more abundant than PCBs and on the level of DDT residues. Furthermore, Q1 was more abundant in seals from the Antarctic than the Arctic. To prove this assumption, gas chromatography-electron-capture negative ion mass spectrometry (GC/ECNI-MS), which is sensitive and selective for Q1, allowed for screening of traces of Q1 even in samples with particularly high levels of other organochlorine contaminants. Q1 was isolated by high-performance liquid chromatography (HPLC) from a skua liver sample. A 1:1 mixture with trans-nonachlor in electron-capture detectors (ECDs) was used to determine the relative response factor with ECNI-MS. The ECNI-MS response of Q1 turned out to be 4.5 times higher than that of trans-nonachlor in an ECD. With GC/ECNI-MS in the selected ion-monitoring mode, four Antarctic and four Arctic air samples were investigated for the presence of Q1. In the Antarctic air samples, Q1 levels ranged from 0.7 to 0.9 fg/m(3). In Arctic air samples, however, Q1 was below the detection limit (<0.06 fg/m(3) or 60 ag/m(3)). We also report on high Q1 levels in selected human milk samples (12-230 microg/kg lipid) and, therefore, suggested that the unknown Q1 is an environmental compound whose origin and distribution should be investigated in detail. Our data confirm that Q1 is a bioaccumulative natural organochlorine product. Detection of a highly chlorinated natural organochlorine compound in air and human milk is novel.
-
Levels of persistent organic pollutants (POPs), such as polychlorinated biphenyls and pesticides have been determined in ambient air at Signy Island, Antarctica, over a period of 17 weeks. Mean concentrations for single polychlorinated biphenyls (0.02–17 pg/m3), for chlordanes (0.04–0.9 pg/m3), DDT compounds (0.07–0.40 pg/m3) and γ-hexachlorocyclohexane (HCH, 22 pg/m3) were comparable to those in Arctic air. However, α-HCH levels were approximately one order of magnitude lower. Compared to the Arctic, differences were also observed in the concentration ratios of α-/γ-HCH and chlordane compounds. Two possible atmospheric long-range transport episodes from South America were found by comparing 10-day back trajectories with observed concentration changes. The lower limits of determination (LOD) were mainly governed by the field blanks. They were satisfactory for the most volatile PCBs. However, many concentrations for DDT and chlordane compounds were below the LODs (range 0.1–1 pg/m3) or even the instrumental detection limit (0.01–0.03 pg/m3).
-
The primary input of Persistent Organic Pollutant (POP) contamination to the Antarctic is expected to be via Long Range Atmospheric Transport (LRAT) from emissions in neighboring Southern hemisphere nations In addition to LRAT, system input of POPs must increasingly consider alternate pathways Human activity in the Antarctic represents a potential direct source of both legacy and current-use chemicals It has been two decades since the organic chemical composition of air masses arriving in the Australian Antarctic Territory (AAT), which spans the majority of the eastern Antarctic sector, was last investigated Here we present the first atmospheric measurements made as part of a new continuous monitoring effort at Casey station (66°17’ S 110°31’ E), one of Australia’s all-year research stations The results are evaluated alongside POP contamination data of soil samples collected around the Casey station perimeter and the respective sample profiles are assessed for clues as to local and distant contamination sources Results suggest a potential local source of the currently produced, involatile, deca-brominated PBDE congener 209 which contributed substantially to PBDE profiles of all samples Profiles of polychlorinated biphenyls (PCBs) and rganochlorine pesticides on the other hand primarilly support LRAT as the primary input pathway of these contaminants, whilst a dominance of endosulfan in air samples evidences its ongoing application in the southern hemisphere.
-
This study investigated the role of a permanently manned Australian Antarctic research station (Casey Station) as a source of contemporary persistent organic pollutants (POPs) to the local environment. Polybrominated diphenyl ethers (PBDEs) and poly- and perfluoroalkylated substances (PFASs) were found in indoor dust and treated wastewater effluent of the station. PBDE (e.g., BDE-209 26–820 ng g–1 dry weight (dw)) and PFAS levels (e.g., PFOS 3.8–2400 ng g–1 (dw)) in dust were consistent with those previously reported in homes and offices from Australia, reflecting consumer products and materials of the host nation. The levels of PBDEs and PFASs in wastewater (e.g., BDE-209 71–400 ng L–1) were in the upper range of concentrations reported for secondary treatment plants in other parts of the world. The chemical profiles of some PFAS samples were, however, different from domestic profiles. Dispersal of chemicals into the immediate marine and terrestrial environments was investigated by analysis of abiotic and biotic matrices. Analytes showed decreasing concentrations with increasing distance from the station. This study provides the first evidence of PFAS input to Polar regions via local research stations and demonstrates the introduction of POPs recently listed under the Stockholm Convention into the Antarctic environment through local human activities.
Explore
Topic
- Antarktis
- atmosfæren (2)
- forskningsstasjoner (2)
- forurensning (5)
- kromatografi (1)
- langtransport (1)
- luftforurensning (1)
- marin biologi (1)
- menneskelig påvirkning (1)
- meteorologi (1)
- miljøgifter (5)
- miljøovervåking (1)
- pinnipedier (1)
- polarområdene (2)
- seler (1)
- toksikologi (1)
Resource type
- Conference Paper (1)
- Journal Article (4)
Publication year
- Between 1900 and 1999 (2)
-
Between 2000 and 2025
(3)
-
Between 2000 and 2009
(1)
- 2000 (1)
- Between 2010 and 2019 (2)
-
Between 2000 and 2009
(1)