Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 6 resources
-
As a result of intensive field activities carried out by several nations over the past 15 years, a set of accumulation measurements for western Dronning Maud Land, Antarctica, was collected, based on firn-core drilling and snow-pit sampling. This new information was supplemented by earlier data taken from the literature, resulting in 111 accumulation values. Using Geographical Information Systems software, a first region-wide mean annual snow-accumulation field was derived. In order to define suitable interpolation criteria, the accumulation records were analyzed with respect to their spatial autocorrelation and statistical properties. The resulting accumulation pattern resembles well- known characteristics such as a relatively wet coastal area with a sharp transition to the dry interior, but also reveals complex topographic effects. Furthermore, this work identifies new high-return shallowdrilling sites by uncovering areas of insufficient sampling density.
-
We use a network of eight ice cores from coastal Dronning Maud Land (DML), Antarctica, to examine the role of the tropical ENSO (El Niño-Southern Oscillation) in the temporal variability of δ18O in annual accumulation. The longest record from the S100 ice core covering the period 1737–1999 is used to analyze the teleconnections between the tropical Pacific and coastal DML on decadal scales and longer. A shorter stacked coastal DML δ18O series spanning 1955–1999 is constructed to assess the variability of ENSO teleconnection on interannual scales. Results suggest that, on typical ENSO timescales of 2–6 years, the strength of the teleconnection varies in time, being stronger for years with generally negative phase of the Southern Annular Mode (SAM). On the timescales of approximately two decades (bidecadal), positive isotope anomalies are associated with oceanic warming and a westward sea surface temperature (SST) gradient in the equatorial Pacific. Bidecadal variability in SAM, forced by the tropical Pacific, is proposed as a critical element in the teleconnection. Our analysis suggests that a multidecadal positive trend in the annual mean δ18O values from the analyzed cores can be indicative of the atmospheric warming that begun in this part of the DML already in the 1910s. The trend in δ18O, quantified in terms of long-term surface air temperature (SAT) changes, is consistent with the instrumental data. Yet, we speculate that the accurate estimation of SAT trends requires an assessment of the potential role of secular SAM and sea ice extent changes in shaping the isotopic signal.
-
The East Antarctic Ice Sheet is the largest, highest, coldest, driest, and windiest ice sheet on Earth. Understanding of the surface mass balance (SMB) of Antarctica is necessary to determine the present state of the ice sheet, to make predictions of its potential contribution to sea level rise, and to determine its past history for paleoclimatic reconstructions. However, SMB values are poorly known because of logistic constraints in extreme polar environments, and they represent one of the biggest challenges of Antarctic science. Snow accumulation is the most important parameter for the SMB of ice sheets. SMB varies on a number of scales, from small-scale features (sastrugi) to ice-sheet-scale SMB patterns determined mainly by temperature, elevation, distance from the coast, and wind-driven processes. In situ measurements of SMB are performed at single points by stakes, ultrasonic sounders, snow pits, and firn and ice cores and laterally by continuous measurements using ground-penetrating radar. SMB for large regions can only be achieved practically by using remote sensing and/or numerical climate modeling. However, these techniques rely on ground truthing to improve the resolution and accuracy. The separation of spatial and temporal variations of SMB in transient regimes is necessary for accurate interpretation of ice core records. In this review we provide an overview of the various measurement techniques, related difficulties, and limitations of data interpretation; describe spatial characteristics of East Antarctic SMB and issues related to the spatial and temporal representativity of measurements; and provide recommendations on how to perform in situ measurements.
-
We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models.
-
From its original formulation in 1990 the International Trans-Antarctic Scientific Expedition (ITASE) has had as its primary aim the collection and interpretation of a continent-wide array of environmental parameters assembled through the coordinated efforts of scientists from several nations. ITASE offers the ground-based opportunities of traditional-style traverse travel coupled with the modern technology of GPS, crevasse detecting radar, satellite communications and multidisciplinary research. By operating predominantly in the mode of an oversnow traverse, ITASE offers scientists the opportunity to experience the dynamic range of the Antarctic environment. ITASE also offers an important interactive venue for research similar to that afforded by oceanographic research vessels and large polar field camps, without the cost of the former or the lack of mobility of the latter. More importantly, the combination of disciplines represented by ITASE provides a unique, multidimensional (space and time) view of the ice sheet and its history. ITASE has now collected >20 000km of snow radar, recovered more than 240 firn/ice cores (total length 7000 m), remotely penetrated to ~4000m into the ice sheet, and sampled the atmosphere to heights of >20 km.
-
The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.
Explore
Topic
- akkumulasjon (1)
- Antarktis (4)
- atmosfæren (1)
- Dronning Maud Land (4)
- ekspedisjoner (1)
- fjernmåling (1)
- geofysikk (1)
- geovitenskap (1)
- glasiologi (4)
- havnivåstigning (1)
- innlandsis (1)
- iskjerner (1)
- klima (1)
- klimagasser (1)
- klimatologi (2)
- meteorologi (1)
- paleoklimatologi (2)
- snø (1)
- Sørishavet (2)
- stabile isotoper (1)
- transantarktiske ekspedisjoner (1)
Resource type
- Journal Article (6)
Publication year
-
Between 2000 and 2025
(6)
- Between 2000 and 2009 (5)
-
Between 2010 and 2019
(1)
- 2011 (1)