Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 6 resources
-
We present oceanographic data from beneath the northern Ronne Ice Shelf. The data were collected during the austral summer of 2002–2003 from four sites located near the ice front in the Ronne Depression. They consist of conductivity-temperature-depth (CTD) profiles and time series from moored instruments that vary in length from 9 to 20 weeks. A strong, tidally modulated inflow of relatively fresh water was found at the eastern margin of the Ronne Depression. This low-density inflow powers high basal melt rates that are responsible for a substantially thinned area of ice shelf. A northward flow of Ice Shelf Water along the western margin of the depression (the Antarctic Peninsula coast) was inferred from the CTD data. From the new CTD and current meter data, and from published results from cruises along the ice front, we suggest that the flows at the margins of the Ronne Depression establish east-west density gradients that drive an anticyclonic circulation within the depression. The barotropic component of the circulation forms a gyre of strength 5 × 105 m3 s−1 and occupies a bowl in the field of water column thickness in the northern portion of the depression. All water masses sampled had temperatures below the surface freezing point and are therefore classified as Ice Shelf Water. The relatively complex nature of the oceanographic regime in the Ronne Depression is overlain by a seasonal variability that is hinted at by the available time series, probably explaining the apparent absence of inflowing HSSW at the time of the measurements.
-
Interactions between the Southern Ocean and the Weddell Sea ice shelves are important both to the Antarctic Ice Sheet and to the production of globally significant water masses. Here we review the interaction between the Filchner-Ronne Ice Shelf and the shelf sea in which it floats. The continental shelf processes leading to the production of Weddell Sea deep and bottom waters from the original off-shelf source waters are discussed, and a new view is offered of the initial production of High-Salinity Shelf Water. Data from ship-based measurements at the ice front, from glaciological methods, and from measurements made within the sub–ice shelf cavity itself are used to describe the pattern of flows beneath the ice shelf. We also consider the variability observed within the cavity from tidal to interannual time scales and finish with a discussion of future research priorities in the region.
-
The Antarctic Slope Front presents a dynamical barrier between the cold Antarctic shelf waters in contact with ice shelves and the warmer subsurface waters offshore. Two hydrographic sections with full-depth current measurements were undertaken in January and February 2009 across the slope and shelf in the southeastern Weddell Sea. Southwestward surface-intensified currents of ∼30 cm s−1, and northeastward undercurrents of 6–9 cm s−1, were in thermal-wind balance with the sloping isopycnals across the front, which migrated offshore by 30 km in the time interval between the two sections. A mid-depth undercurrent on February 23 was associated with a 130-m uplift of the main pycnocline, bringing Warm Deep Water closer to the shelf break. This vertical displacement, comparable to that caused by seasonal variations in wind speed, implies that undercurrents may affect the exchanges between coastal and deep waters near the Antarctic continental margins.
-
The buttressing potential of ice shelves is modulated by changes in subshelf melting, in response to changing ocean conditions. We analyze the temporal variability in subshelf melting using an autonomous phase-sensitive radio-echo sounder near the grounding line of the Roi Baudouin Ice Shelf in East Antarctica. When combined with additional oceanographic evidence of seasonal variations in the stratification and the amplification of diurnal tides around the shelf break topography (Gunnerus Bank), the results suggest an intricate mechanism in which topographic waves control the seasonal melt rate variability near the grounding line. This mechanism has not been considered before and has the potential to enhance local melt rates without advecting different water masses. As topographic waves seem to strengthen in a stratified ocean, the freshening of Antarctic surface water, predicted by observations and models, is likely to increase future basal melting in this area.
-
Floating ice shelves are the Achilles’ heel of the Antarctic Ice Sheet. They limit Antarctica’s contribution to global sea level rise, yet they can be rapidly melted from beneath by a warming ocean. At Filchner-Ronne Ice Shelf, a decline in sea ice formation may increase basal melt rates and accelerate marine ice sheet mass loss within this century. However, the understanding of this tipping-point behavior largely relies on numerical models. Our new multi-annual observations from five hot-water drilled boreholes through Filchner-Ronne Ice Shelf show that since 2015 there has been an intensification of the density-driven ice shelf cavity-wide circulation in response to reinforced wind-driven sea ice formation in the Ronne polynya. Enhanced southerly winds over Ronne Ice Shelf coincide with westward displacements of the Amundsen Sea Low position, connecting the cavity circulation with changes in large-scale atmospheric circulation patterns as a new aspect of the atmosphere-ocean-ice shelf system.
Explore
Topic
- isshelf
- AABW (1)
- Antarktis (3)
- bunnvann (1)
- geofysikk (1)
- glasiologi (3)
- havstrømmer (1)
- hydrografi (2)
- innlandsis (1)
- isbrem (1)
- isfront (3)
- klimatologi (1)
- kontinentalmargin (1)
- kontinentalsokkel (1)
- meteorologi (1)
- oseanografi (5)
- smelting (1)
- Sørishavet (5)
- understrømmer (1)
- vannmasser (3)
- Weddellhavet (3)
Resource type
- Journal Article (6)
Publication year
-
Between 2000 and 2025
(6)
- Between 2000 and 2009 (2)
- Between 2010 and 2019 (3)
-
Between 2020 and 2025
(1)
- 2021 (1)
Online resource
- yes (6)