Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 6 resources
-
Traditional methods of deriving temporal variability of Antarctic ice-shelf elevation from satellite altimetry use a fixed (“Eulerian”) reference frame, where the measured changes include advection of ice thickness gradients between measurement epochs. We present a new method which removes advection effects by using an independent velocity field to compare elevations in a moving (“Lagrangian”) reference frame. Applying the technique to ICESat laser altimetry for the period 2003–2009 over the two largest Antarctic ice shelves, Ross and Filchner-Ronne, we show that the Lagrangian approach reduces the variability of derived elevation changes by about 50% compared to the Eulerian approach and reveals clearer spatial patterns of elevation change. The method simplifies the process of estimating basal mass budget from the residual of all other processes that contribute to ice-shelf elevation changes. We use field data and ICESat measurements over ice rises and the grounded ice sheet to account for surface accumulation and changes in firn air content, and remove the effect of ice-flow divergence using surface velocity and ice thickness data. The results show highest basal melt rates (>5 m a−1) near the deep grounding lines of major ice streams, but smaller melt rates (<5 m a−1) near the ice-shelf fronts are equally important to total meltwater production since they occur over larger areas. Integrating over the entire ice-shelf areas, we obtain basal mass budgets of −50 ± 64 Gt a−1 for Ross and −124 ± 66 Gt a−1 for Filchner-Ronne, with changes in firn air content as the largest error source.
-
At any one time 130 000 icebergs are afloat in the Southern Ocean; 97% of these are too small to be registered in current satellite-based databases, yet the melting of these small icebergs provides a major input to the Southern Ocean. We use a unique set of visual size observations of 53 000 icebergs in the South Atlantic Ocean, the SCAR International Iceberg Database, to derive average iceberg dissolution rates. Fracture into two parts is the dominant dissolution process for tabular icebergs, with an average half-life of 30 days for icebergs <4 km length and 60 days for larger icebergs. Complete shatter producing many icebergs <1 km length is rare. A side attrition rate of 0.23 m d−1 combined with drift speed of 6 km d−1, or any proportional change in both numbers fits the observed changes in iceberg distribution. The largest injection into the Southern Ocean of fresh water and any iceberg-transported material takes place in a ~2.3 × 10⁶ km2 zone extending east-northeast from the Antarctic Peninsula to the Greenwich meridian. The iceberg contribution to salinities and temperatures, with maximum contribution north of the Weddell Sea, differs in some regions, from those indicated by tracking large icebergs.
-
Understanding how climate change influences ocean-driven melting of the Antarctic ice shelves is one of the greatest challenges for projecting future sea level rise. The East Antarctic ice shelf cavities host cold water masses that limit melting, and only a few short-term observational studies exist on what drives warm water intrusions into these cavities. We analyse nine years of continuous oceanographic records from below Fimbulisen and relate them to oceanic and atmospheric forcing. On monthly time scales, warm inflow events are associated with weakened coastal easterlies reducing downwelling in front of the ice shelf. Since 2016, however, we observe sustained warming, with inflowing Warm Deep Water temperatures reaching above 0 °C. This is concurrent with an increase in satellite-derived basal melt rates of 0.62 m yr−1, which nearly doubles the basal mass loss at this relatively cold ice shelf cavity. We find that this transition is linked to a reduction in coastal sea ice cover through an increase in atmosphere–ocean momentum transfer and to a strengthening of remote subpolar westerlies. These results imply that East Antarctic ice shelves may become more exposed to warmer waters with a projected increase of circum-Antarctic westerlies, increasing this region’s relevance for sea level rise projections.
-
Abstract Basal melting of ice shelves is fundamental to Antarctic ice sheet mass loss, yet direct observations remain sparse. We present the first year-round melt record (2017-2021) from a phase-sensitive radar on Fimbulisen, one of the fastest flowing ice shelves in Dronning Maud Land, East Antarctica. The observed long-term mean ablation rate at 350 m depth below the central ice shelf was 1.0 ± 0.5 m yr?1, marked by substantial sub-weekly variability ranging from 0.4 to 3.5 m yr?1. 36-h filtered basal melt rate fluctuations closely align with ocean velocity. On seasonal time scales, melt rates peak during austral spring to autumn (September-March), driven by both elevated ocean velocities and thermal driving near the base. The combined effect of thermal driving and current speed explains the majority of the melt rate variability (r = 0.84), highlighting the dominant role of shear-driven turbulence. This relationship enables parameterization of melt rates for the decade-long ocean record (2010?2021), although deviations appear under low and high forcing conditions. Both observed and parameterized melt rates show similar yearly mean magnitudes compared to satellite-derived melt rates but with a tenfold lower seasonal amplitude and a 3-month delay in seasonality. These detailed concurrent ice?ocean observations provide essential validation data for remote sensing and numerical models that aim to quantify and project ice-shelf response to a change in ocean forcing. In situ measurements and continued monitoring are crucial for accurately assessing and modeling future basal melt rates, and for understanding the complex dynamics driving ice-shelf stability and sea-level change.
-
Despite the exclusion of the Southern Ocean from assessments of progress towards achieving the Convention on Biological Diversity (CBD) Strategic Plan, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has taken on the mantle of progressing efforts to achieve it. Within the CBD, Aichi Target 11 represents an agreed commitment to protect 10% of the global coastal and marine environment. Adopting an ethos of presenting the best available scientific evidence to support policy makers, CCAMLR has progressed this by designating two Marine Protected Areas in the Southern Ocean, with three others under consideration. The region of Antarctica known as Dronning Maud Land (DML; 20°W to 40°E) and the Atlantic sector of the Southern Ocean that abuts it conveniently spans one region under consideration for spatial protection. To facilitate both an open and transparent process to provide the vest available scientific evidence for policy makers to formulate management options, we review the body of physical, geochemical and biological knowledge of the marine environment of this region. The level of scientific knowledge throughout the seascape abutting DML is polarized, with a clear lack of data in its eastern part which is presumably related to differing levels of research effort dedicated by national Antarctic programmes in the region. The lack of basic data on fundamental aspects of the physical, geological and biological nature of eastern DML make predictions of future trends difficult to impossible, with implications for the provision of management advice including spatial management. Finally, by highlighting key knowledge gaps across the scientific disciplines our review also serves to provide guidance to future research across this important region.
-
We present Bedmap3, the latest suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60 °S. Bedmap3 incorporates and adds to all post-1950s datasets previously used for Bedmap2, including 84 new aero-geophysical surveys by 15 data providers, an additional 52 million data points and 1.9 million line-kilometres of measurement. These efforts have filled notable gaps including in major mountain ranges and the deep interior of East Antarctica, along West Antarctic coastlines and on the Antarctic Peninsula. Our new Bedmap3/RINGS grounding line similarly consolidates multiple recent mappings into a single, spatially coherent feature. Combined with updated maps of surface topography, ice shelf thickness, rock outcrops and bathymetry, Bedmap3 reveals in much greater detail the subglacial landscape and distribution of Antarctica’s ice, providing new opportunities to interpret continental-scale landscape evolution and to model the past and future evolution of the Antarctic ice sheets.
Explore
Topic
- oseanografi
- Antarktis (1)
- batymetri (1)
- biofysikk (1)
- biogeokjemi (1)
- biologi (1)
- brehylle (1)
- Dronning Maud Land (2)
- fjernmåling (1)
- geofysikk (2)
- geomorfologi (1)
- glasiologi (3)
- hydrologi (1)
- iceberg calving (1)
- innlandsis (1)
- isbrem (1)
- isfjell (1)
- isshelf (1)
- klimamodeller (1)
- satellite altimetri (1)
- Sørishavet (4)
Resource type
- Journal Article (6)
Publication year
-
Between 2000 and 2025
(6)
-
Between 2010 and 2019
(1)
- 2014 (1)
- Between 2020 and 2025 (5)
-
Between 2010 and 2019
(1)
Online resource
- yes (6)