Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 6 resources
-
Our study makes use of a fortuitous oceanographic data set collected around the remote sub-Antarctic island of Bouvetøya by a conductivity–temperature–depth recorder (CTD) integrated with a satellite-relayed data logger deployed on an adult female southern elephant seal (Mirounga leonina) to describe the seasonal evolution of the western shelf waters. The instrumented seal remained in waters over the shelf for 259 days, collecting an average of 2.6 (±0.06) CTD profiles per day, providing hydrographic data encompassing the late austral summer and the entire winter. These data document the thermal stratification of the upper water layer due to summer surface heating of the previous year's Antarctic Surface Water, giving way to a cold subsurface layer at about 100 m as the austral winter progressed, with a concomitant increase in salinity of the upper layer. Upper Circumpolar Deep Water was detected at a depth of approximately 200 m along the western shelf of Bouvetøya throughout the year. These oceanographic data represent the only seasonal time series for this region and the second such animal–instrument oceanographic time series in the sub-Antarctic domain of the Southern Ocean.
-
The Antarctic fur seal (Arctocephalus gazella) is a key marine predator in the Southern Ocean, a region that has recently started to show changes as a result of global climate change. Here, carbon (δ 13 C) and nitrogen (δ 15 N) stable isotope analyses on whole blood and plasma samples were used to examine the isotopic niche of lactating female Antarctic fur seals. Using recently developed Bayesian approaches to determine changes in isotopic niche, a significant increase in δ 13 C and δ 15 N was found between 1997 and 2015; this change occurred at an average rate of 0.067‰ (δ 13 C) and 0.072‰ (δ 15 N) per year over this period. This suggests that a marked isotopic niche shift has occurred over this period, which very likely corresponds to a shift in diet towards prey at a higher trophic level, such as fish (replacing krill). Although our sampling design prevented us from exploring a seasonal trend in a conclusive manner, our data suggest that concurrent increases in δ 13 C and δ 15 N might occur as the breeding season progresses. At a seasonal scale, an average decrease of −0.7‰ per month (95% confidence interval=[−0.9; −0.6]) in δ 13 C might have occurred, concurrently with an average increase of 1.1‰ per month in δ 15 N. The results of this study constitute the first isotopic assessment for female Antarctic fur seals from Bouvetøya and provide a baseline for the use of this predator species as a sentinel of the marine trophic system in one of the least studied areas within this species' distributional range.
-
There is increasing interest in using higher-trophic level predators as ecosystem indicators because their performance is presumed to be linked to the overall function of the ecosystem that supports them. In the southwest Atlantic sector of the Southern Ocean, Antarctic krill (Euphausia superba) supports huge predator populations as well as a growing commercial fishery. To utilize information from the ecosystem in an adaptive framework for sustainably managing krill catch levels, performance indices of krill predators have been proposed as a proxy for krill abundance. However, there are several potentially confounding sources of variability that might impact predator performance such as the effects of environmental variability and fishing pressure on krill availability at scales relevant to predators. In this context, our study capitalises on the occurrence of an unexpected El Niño event to characterise how environmental variability can drive changes in predator foraging behaviour. We demonstrate a clear link between coastal downwelling and changes in the at-sea habitat usage of chinstrap penguins (Pygoscelis antarctica) foraging in a local krill fishing area. Penguins tracked from their breeding colonies on Powell Island, Antarctic Peninsula, undertook fewer, longer foraging trips during the downwelling-affected season compared with the season where no such downwelling was detected, suggesting that changes in climate-driven oceanography may have reduced krill availability along the northern shelf of the island. Our study demonstrates that penguin foraging behaviour is modified by scale-dependent processes, which if not accounted for may result in erroneous conclusions being drawn when using penguins as bioindicators of krill abundance.
-
Antarctic fur seal (Arctocephalus gazella) colonies are found on sub-Antarctic islands around the continent. These islands experience a range of conditions in terms of physical and biological habitat, creating a natural laboratory to investigate local genetic adaptation. One striking habitat difference is in the availability of Euphausia superba krill as prey, which has led to A. gazella exhibiting a range of diets. A. gazella in some colonies consume exclusively krill, while their conspecifics in other colonies feed mainly on fish and consume few to no krill. To investigate potential adaptations to these different prey fields, reduced representation genome sequencing was conducted on A. gazella from the 8 major colonies. Twenty-seven genomic regions exhibiting signatures of natural selection were identified. Two of these genomic regions were clearly associated with seals living in krill-dominated areas or those in fish-dominated areas. Twenty-two additional genomic regions under selection showed a pattern consistent with prey differences as the driver of selection after historical migrations from krill-dominated habitats where lineages evolved to present krill-poor habitat areas were taken into account. Only 1 of the genomic regions identified appeared to be explained by any other environmental variable analysed (depth). Genomic regions under prey-driven selection included genes associated with regulation of gene expression, skeletal development, and lipid metabolism. Adaptation to local prey has implications for spatial management of this species and for the potential impacts of climate- or harvest-driven reductions in krill abundance on these seals. KEY WORDS: Arctocephalus gazella · Double digest restriction-site associated DNA sequencing · ddRAD · Diet · Euphausia superba · Natural selection
Explore
Topic
- AABW (1)
- biotelemetri (1)
- Bouvetøya (5)
- fugler (1)
- genetikk (2)
- hydrografi (1)
- klimaendringer (1)
- krill (2)
- marin biologi (4)
- marinbiologi (1)
- meteorologi (1)
- økologi (1)
- økosystemer (1)
- ornitologi (2)
- oseanografi (2)
- pelsseler (3)
- pingviner (3)
- plankton (2)
- satellitt (1)
- seler (1)
- Sørishavet (4)
- stabile isotoper (1)
- telemetri (1)
- zoologi (2)
Resource type
- Journal Article (6)