Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • The Antarctic fur seal (Arctocephalus gazella) is a key marine predator in the Southern Ocean, a region that has recently started to show changes as a result of global climate change. Here, carbon (δ 13 C) and nitrogen (δ 15 N) stable isotope analyses on whole blood and plasma samples were used to examine the isotopic niche of lactating female Antarctic fur seals. Using recently developed Bayesian approaches to determine changes in isotopic niche, a significant increase in δ 13 C and δ 15 N was found between 1997 and 2015; this change occurred at an average rate of 0.067‰ (δ 13 C) and 0.072‰ (δ 15 N) per year over this period. This suggests that a marked isotopic niche shift has occurred over this period, which very likely corresponds to a shift in diet towards prey at a higher trophic level, such as fish (replacing krill). Although our sampling design prevented us from exploring a seasonal trend in a conclusive manner, our data suggest that concurrent increases in δ 13 C and δ 15 N might occur as the breeding season progresses. At a seasonal scale, an average decrease of −0.7‰ per month (95% confidence interval=[−0.9; −0.6]) in δ 13 C might have occurred, concurrently with an average increase of 1.1‰ per month in δ 15 N. The results of this study constitute the first isotopic assessment for female Antarctic fur seals from Bouvetøya and provide a baseline for the use of this predator species as a sentinel of the marine trophic system in one of the least studied areas within this species' distributional range.

  • Antarctic krill <i>Euphausia superba</i>, a keystone species in the Southern Ocean, is highly relevant for studying effects of climate-related shifts on management systems. Krill provides a key link between primary producers and higher trophic levels and supports the largest regional fishery. Any major perturbation in the krill population would have severe ecological and economic ramifications. We review the literature to determine how climate change, in concert with other environmental changes, alters krill habitat, affects spatial distribution/abundance, and impacts fisheries management. Findings recently reported on the effects of climate change on krill distribution and abundance are inconsistent, however, raising questions regarding methods used to detect changes in density and biomass. One recent study reported a sharp decline in krill densities near their northern limit, accompanied by a poleward contraction in distribution in the Southwest Atlantic sector. Another recent study found no evidence of long-term decline in krill density or biomass and reported no evidence of a poleward shift in distribution. Moreover, with predicted decreases in phytoplankton production, vertical foraging migrations to the seabed may become more frequent, also impacting krill production and harvesting. Potentially cumulative impacts of climate change further compound the management challenge faced by CCAMLR, the organization responsible for conservation of Antarctic marine living resources: to detect changes in the abundance, distribution, and reproductive performance of krill and krill-dependent predator stocks and to respond to such change by adjusting its conservation measures. Based on CCAMLR reports and documents, we review the institutional framework, outline how climate change has been addressed within this organization, and examine the prospects for further advances toward ecosystem risk assessment and an adaptive management system.

  • Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.

Last update from database: 4/1/25, 2:10 AM (UTC)