Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 4 resources
-
The Southern Ocean (south of 30°S) contributes significantly to global ocean carbon uptake through the solubility, physical and biological pumps. Many studies have estimated carbon export to the deep ocean, but very few have attempted a basin-scale perspective, or accounted for the sea-ice zone (SIZ). In this study, we use an extensive array of BGC-Argo floats to improve previous estimates of carbon export across basins and frontal zones, specifically including the SIZ. Using a new method involving changes in particulate organic carbon and dissolved oxygen along the mesopelagic layer, we find that the total Southern Ocean carbon export from 2014 to 2022 is 2.69 ± 1.23 PgC y?1. The polar Antarctic zone contributes the most (41%) with 1.09 ± 0.46 PgC y?1. Conversely, the SIZ contributes the least (8%) with 0.21 ± 0.09 PgC y?1 and displays a strong shallow respiration in the upper 200 m. However, the SIZ contribution can increase up to 14% depending on the depth range investigated. We also consider vertical turbulent fluxes, which can be neglected at depth but are important near the surface. Our work provides a complementary approach to previous studies and is relevant for work that focuses on evaluating the biogeochemical impacts of changes in Antarctic sea-ice extent. Refining estimates of carbon export and understanding its drivers ultimately impacts our comprehension of climate variability at the global ocean scale.
-
Antarctic sea ice can incorporate high levels of iron (Fe) during its formation and has been suggested as an important source of this essential micronutrient to Southern Ocean surface waters during the melt season. Over the last decade, a limited number of studies have quantified the Fe pool in Antarctic sea ice, with a focus on late winter and spring. Here we study the distribution of operationally defined dissolved and particulate Fe from nine sites sampled between Wilkes Land and King George V Land during austral summer 2016/2017. Results point toward a net heterotrophic sea-ice community, consistent with the observed nitrate limitation (<1 μM). We postulate that the recycling of the high particulate Fe pool in summer sea ice supplies sufficient (∼3 nM) levels of dissolved Fe to sustain ice algal growth. The remineralization of particulate Fe is likely favored by high concentrations of exopolysaccharides (113–16,290 μg xeq L−1) which can serve as a hotspot for bacterial activity. Finally, results indicate a potential relationship between glacial meltwater discharged from the Moscow University Ice Shelf and the occurrence of Fe-rich (∼4.3 μM) platelet ice in its vicinity. As climate change is expected to result in enhanced Fe-rich glacial discharge and changes in summer sea-ice extent and quality, the processes influencing Fe distribution in sea ice that persists into summer need to be better constrained.
-
In the Southern Ocean, polynyas exhibit enhanced rates of primary productivity and represent large seasonal sinks for atmospheric CO2. Three contrasting east Antarctic polynyas were visited in late December to early January 2017: the Dalton, Mertz, and Ninnis polynyas. In the Mertz and Ninnis polynyas, phytoplankton biomass (average of 322 and 354 mg chlorophyll a (Chl a)/m2, respectively) and net community production (5.3 and 4.6 mol C/m2, respectively) were approximately 3 times those measured in the Dalton polynya (average of 122 mg Chl a/m2 and 1.8 mol C/m2). Phytoplankton communities also differed between the polynyas. Diatoms were thriving in the Mertz and Ninnis polynyas but not in the Dalton polynya, where Phaeocystis antarctica dominated. These strong regional differences were explored using physiological, biological, and physical parameters. The most likely drivers of the observed higher productivity in the Mertz and Ninnis were the relatively shallow inflow of iron-rich modified Circumpolar Deep Water onto the shelf as well as a very large sea ice meltwater contribution. The productivity contrast between the three polynyas could not be explained by (1) the input of glacial meltwater, (2) the presence of Ice Shelf Water, or (3) stratification of the mixed layer. Our results show that physical drivers regulate the productivity of polynyas, suggesting that the response of biological productivity and carbon export to future change will vary among polynyas.
-
Abstract Antarctic sea ice is one of the largest biomes on Earth providing a critical habitat for ice algae. Measurements of primary production in Antarctic sea ice remain scarce and an observation-based estimate of primary production has not been revisited in over 30 years. We fill this knowledge gap by presenting a newly compiled circumpolar data set of particulate and dissolved organic carbon from 362 ice cores, sampled between 1989 and 2019, to estimate sea-ice net community production using a carbon biomass accumulation approach. Our estimate of 26.8?32.9 Tg C yr?1 accounts for at least 15%?18% of the total primary production in the Antarctic sea-ice zone, less than a previous observation-based estimate (63?70 Tg C yr?1) and consistent with recent modeled estimates. The results underpin the ecological significance of sea-ice algae as an early season resource for pelagic food webs.
Explore
Topic
- sjøis
- alger (1)
- biogeokjemi (2)
- biomasse (1)
- brehylle (1)
- fotosyntese (2)
- fytoplankton (3)
- havis (3)
- havis alger (1)
- isbrem (1)
- isshelf (1)
- karbon syklus (1)
- karbondioksid (1)
- karbonsyklus (1)
- klimaendringer (1)
- marin biologi (2)
- oseanografi (3)
- polynja (1)
- primærproduksjon (1)
- Sørishavet (4)
Resource type
- Journal Article (4)
Publication year
-
Between 2000 and 2025
(4)
-
Between 2010 and 2019
(1)
- 2019 (1)
- Between 2020 and 2025 (3)
-
Between 2010 and 2019
(1)
Online resource
- yes (4)