Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • Bycatch of nontarget species can contribute to overfishing and slow efforts to rebuild fish stocks. Controlling bycatch is fundamental to sustainable fishing and maintaining healthy populations of target species. The Antarctic krill (Euphausia superba) fishery is the largest volume fishery in the Southern Ocean. Understanding the significance of bycatch and its diversity is critical to managing this keystone species. Registered bycatch data from the Antarctic krill fishery in the southwest Atlantic sector of the Southern Ocean were analysed. Observers collected data following an internationally agreed method during the 2010–2020 fishing seasons, with a 20 (± 9) % coverage of fishing activity of Total catch of Antarctic krill which increased from 200,000 tonnes to 450,000 tonnes, with the greatest increase over the last 3 years. Except in 2010 (2.2%), the bycatch ratio was stable and ranged 0.1–0.3%. Fish dominated the bycatch, followed by tunicates and other crustaceans. Observer coverage was high, and bycatch levels were generally low across gear types. Given that accurate information on bycatch is important for sustaining developing fisheries, maintaining high observer coverage of this fishery will be important for detecting impacts from a warming climate and for moving back into historical fishing grounds.

  • The fishery for Antarctic krill (Euphausia superba) is the largest by tonnage in the Southern Ocean, and understanding its population dynamics is essential for the sustainable management of this fishery. The standard method for calculating Antarctic krill biomass relies on hydroacoustic survey data and incorporates krill body length data collected concurrently. Traditional scientific acoustic surveys involve manually measuring the body lengths of individual krill caught using fine- meshed nets or trawls along acoustic transects. This work is resource-demanding and could represent a source of human error. To address these challenges, we develop and test an alternative, more automated method for estimating krill body length data by employing an in-trawl stereo camera system. This system collects images that are automatically processed by a custom-trained machine learning model. The results from the machine learning model are then compared to manually measured krill subsampled from the total catch of the corresponding trawl hauls. We demonstrated the ability to extract body lengths from underwater images. However, our results highlighted uncertainties, which we propose addressing by incorporating more advanced camera technology and optimizing the observation section of the small-meshed two-layer krill trawl.

  • Krillscan software was developed to automatically process echosounder data and achieve an accelerated and transparent analysis of backscatter data that allows calculation of target biomass. Herein, the fishery for Antarctic krill (Euphausia superba, Henceforth Krill) was used as a case study to develop the approach. Implementation of a sustainable management strategy for the krill fishery is complicated by a lack of regularly updated krill abundance data on spatiotemporal scales of the fishery. To increase krill biomass data availability, automatic echosounder data processing and swarm detection software was tested against traditional manual scrutinization with LSSS software and agreed with only minor offsets in estimated nautical area scattering coefficients. In addition to automatic processing and data transfer, Krillscan also has a graphical user interface to supervise automatic krill swarm detection. Echogram size can be compressed up to 100 times and raw data are processed faster than generated, thereby enabling near-real time analysis and data transfer. Compressed data can be transmitted online to allow fishing vessels to conduct surveys without having scientific personnel with special expertise on board.

  • Increased knowledge about marine mammal seasonal distribution and species assemblage from the South Orkney Islands waters is needed for the development of management regulations of the commercial fishery for Antarctic krill (Euphausia superba) in this region. Passive acoustic monitoring (PAM) data were collected during the autumn and winter seasons in two consecutive years (2016, 2017), which represented highly contrasting environmental conditions due to the 2016 El Niño event. We explored differences in seasonal patterns in marine mammal acoustic presence between the two years in context of environmental cues and climate variability. Acoustic signals from five baleen whale species, two pinniped species and odontocete species were detected and separated into guilds. Although species diversity remained stable over time, the ice-avoiding and ice-affiliated species dominated before and after the onset of winter, respectively, and thus demonstrating a shift in guild composition related to season. Herein, we provide novel information about local marine mammal species diversity, community structure and residency times in a krill hotspot. Our study also demonstrates the utility of PAM data and its usefulness in providing new insights into the marine mammal habitat use and responses to environmental conditions, which are essential knowledge for the future development of a sustainable fishery management in a changing ecosystem.

  • The stock assessment model for the Antarctic krill fishery is a population model operating on daily timesteps, which permits modeling within-year patterns of some population dynamics. We explored the effects of including within-year patterns in natural and fishing mortality on catch limits of krill, by incorporating temporal presence of key predator species and contemporary temporal trends of the fishing fleet. We found that inclusion of within-year variation in natural and fishing mortalities increased catch limits. Fishing mortality had a greater effect than natural mortality despite differences in top-down predation on krill, and potentially increased catch limits by 24% compared to the baseline model. Additionally, the stock assessment model allowed a higher catch limit when fishing was during peak summer months than autumn. Number of days with active fishing was negatively related to precautionary catch limits. Future stock assessments should incorporate contemporary spatiotemporal fishing trends and consider implementing additional ecosystem components into the model.

  • The management strategy for the Antarctic krill (Euphausia superba) fishery is being revised. A key aim is to spatially and temporally allocate catches in a manner that minimizes impacts to both the krill stock and dependent predators. This process requires spatial information on the distribution and abundance of krill, yet gaps exist for an important fishing area surrounding the South Orkney Islands in the south Scotia Sea. To fill this need, we create a dynamic distribution model for krill in this region. We used data from a spatially and temporally consistent acoustic survey (2011-2020) and year-specific environmental covariates within a two-part hurdle model. The model successfully captured observed spatial and temporal patterns in krill density. The covariates found to be most important included distance from shelf break, distance from summer sea ice extent, and salinity. The northern and eastern shelf edges of the South Orkney Islands were areas of consistently high krill density and displayed strong spatial overlap between intense fishing activity and foraging chinstrap penguins. High mean krill density was also linked to oceanographic features located within the Weddell Sea. Our data suggest that years in which these features were closer to the South Orkney shelf were also years of positive Southern Annular Mode and higher observed krill densities. Our findings highlight existing fishery?predator?prey overlap in the region and support the hypothesis that Weddell Sea oceanography may play a role in transporting krill into this region. These results will feed into the next phase of krill fisheries management assessment.

  • Antarctic krill <i>Euphausia superba</i>, a keystone species in the Southern Ocean, is highly relevant for studying effects of climate-related shifts on management systems. Krill provides a key link between primary producers and higher trophic levels and supports the largest regional fishery. Any major perturbation in the krill population would have severe ecological and economic ramifications. We review the literature to determine how climate change, in concert with other environmental changes, alters krill habitat, affects spatial distribution/abundance, and impacts fisheries management. Findings recently reported on the effects of climate change on krill distribution and abundance are inconsistent, however, raising questions regarding methods used to detect changes in density and biomass. One recent study reported a sharp decline in krill densities near their northern limit, accompanied by a poleward contraction in distribution in the Southwest Atlantic sector. Another recent study found no evidence of long-term decline in krill density or biomass and reported no evidence of a poleward shift in distribution. Moreover, with predicted decreases in phytoplankton production, vertical foraging migrations to the seabed may become more frequent, also impacting krill production and harvesting. Potentially cumulative impacts of climate change further compound the management challenge faced by CCAMLR, the organization responsible for conservation of Antarctic marine living resources: to detect changes in the abundance, distribution, and reproductive performance of krill and krill-dependent predator stocks and to respond to such change by adjusting its conservation measures. Based on CCAMLR reports and documents, we review the institutional framework, outline how climate change has been addressed within this organization, and examine the prospects for further advances toward ecosystem risk assessment and an adaptive management system.

  • Estimates of the distribution and density of Antarctic krill (Euphausia superba Dana, 1850) were derived from a large-scale survey conducted during the austral summer in the Southwest Atlantic sector of the Southern Ocean and across the Scotia Sea in 2018–19, the ‘2018–19 Area 48 Survey’. Survey vessels were provided by Norway, the Association of Responsible Krill harvesting companies and Aker BioMarine AS, the United Kingdom, Ukraine, Republic of Korea, and China. Survey design followed the transects of the Commission for the Conservation of Antarctic Marine Living Resources synoptic survey, carried out in 2000 and from regular national surveys performed in the South Atlantic sector by the U.S., China, Republic of Korea, Norway, and the U.K. The 2018–19 Area 48 Survey represents only the second large-scale survey performed in the area and this joint effort resulted in the largest ever total transect line (19,500 km) coverage carried out as one single exercise in the Southern Ocean. We delineated and integrated acoustic backscatter arising from krill swarms to produce distribution maps of krill areal biomass density and standing stock (biomass) estimates. Krill standing stock for the Area 48 was estimated to be 62.6 megatonnes (mean density of 30 g m–2 over 2 million km2) with a sampling coefficient variation of 13%. The highest mean krill densities were found in the South Orkney Islands stratum (93.2 g m–2) and the lowest in the South Georgia Island stratum (6.4 g m–2). The krill densities across the strata compared to those found during the previous survey indicate some regional differences in distribution and biomass. It is currently not possible to assign any such differences or lack of differences between the two survey datasets to longer term trends in the environment, krill stocks or fishing pressure.

Last update from database: 12/1/25, 3:10 AM (UTC)