Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 5 resources
-
Cryoconite holes form on ice due to enhanced ablation around particles deposited on the surface, and are present in the ablation area of glaciers worldwide. Here we investigate the use of Ground Penetrating Radar (GPR) as a non-destructive method to monitor and map cryoconite holes. We compare GPR data obtained from the Jutulsessen blue ice area in Dronning Maud Land, Antarctica, with modeled GPR data. The modeled GPR response to cryoconite holes is numerically calculated by solving Maxwell's equations with a 3D Finite-Difference Time-Domain (FDTD) scheme. The model includes a realistic shielded bowtie antenna and dimensions and constituent parameters of cryoconite holes excavated in the field. We have performed what-if scenarios with controlled variation of single parameters. We show that GPR can be used to determine the horizontal extent, depth and whether a cryoconite hole is frozen or contains liquid water, information unavailable from visual surface inspection. The cryoconite thickness can, for completely frozen holes, be determined to within a 1/4 of the GPR center frequency wavelength. The exact water content is not readily extractable because the GPR response is influenced by many other factors such as: cryoconite thickness, shape and roughness, as well as antenna ground coupling.
-
Basal melt is a major cause of ice shelf thinning affecting the stability of the ice shelf and reducing its buttressing effect on the inland ice. The Fimbul ice shelf (FIS) in Dronning Maud Land (DML), East Antarctica, is fed by the fast-flowing Jutulstraumen glacier, responsible for 10% of ice discharge from the DML sector of the ice sheet. Current estimates of the basal melt rates of the FIS come from regional ocean models, autosub measurements, and satellite observations, which vary considerably. This discrepancy hampers evaluation of the stability of the Jutulstraumen catchment. Here, we present estimates of basal melt rates of the FIS using ground-based interferometric radar. We find a low average basal melt rate on the order of 1 m/yr, with the highest rates located at the ice shelf front, which extends beyond the continental shelf break. Furthermore, our results provide evidence for a significant seasonal variability.
-
A 100 m long ice core was retrieved from the coastal area of Dronning Maud Land (DML), Antarctica, in the 2000/01 austral summer. The core was dated to AD 1737 by identification of volcanic horizons in dielectrical profiling and electrical conductivity measurement records in combination with seasonal layer counting from high-resolution oxygen isotope (δ18O) data. A mean long-term accumulation rate of 0.29 ma–1w.e. was derived from the high-resolution δ18O record as well as accumulation rates during periods in between the identified volcanic horizons. A statistically significant decrease in accumulation was found from about 1920 to the present. A comparison with other coastal ice cores from DML suggests that this is a regional pattern.
-
Many challenges remain for estimating the Antarctic ice sheet surface mass balance (SMB), which represents a major uncertainty in predictions of future sea-level rise. Validating continental scale studies is hampered by the sparse distribution of in situ data. Here we present a 26 year mean SMB of the Fimbul ice shelf in East Antarctica between 1983–2009, and recent interannual variability since 2010. We compare these data to the results of large-scale SMB studies for similar time periods, obtained from regional atmospheric modeling and remote sensing. Our in situ data include ground penetrating radar, firn cores, and mass balance stakes and provide information on both temporal and spatial scales. The 26 year mean SMB on the Fimbul ice shelf varies between 170 and 620 kg m−2 a−1 giving a regional average value of 310 ± 70 kg m−2 a−1. Our measurements indicate higher long-term accumulation over large parts of the ice shelf compared to the large-scale studies. We also show that the variability of the mean annual SMB, which can be up to 90%, can be a dominant factor in short-term estimates. The results emphasize the importance of using a combination of ground-based validation data, regional climate models, and remote sensing over a relevant time period in order to achieve a reliable SMB for Antarctica.
-
During the Nordic EPICA pre-site survey in Dronning Maud Land in 1997/1998 a 120 m long ice core was retrieved (76°00′S 08°03′W, 2400 m above sea level). The whole core has been measured using the electric conductivity measurement (ECM) and dielectric profiling (DEP) techniques, and the core chronology has been established by detecting major volcanic eruptions. In a nearby shallow core radioactive traces from nuclear tests conducted during the 1950s and 1960s have been identified. Altogether, 13 ECM and DEP peaks in the long core are identified as originating from specific volcanic eruptions. In addition two peaks of increased total β activity are identified in the short core. Accumulation is calculated as averages over the time periods between these dated events. Accumulation rate is 62 millimetres (w. eq./yr) for the last 181 years (1816 A.D. to present) and 61 mm w. eq./yr for the last 1457 years (540 A.D. to present). Our record shows an 8% decrease in accumulation between 1452 and 1641 A.D. (i.e. part of the Little Ice Age), compared to the long-term mean.
Explore
Topic
- Dronning Maud Land
- geofysikk (3)
- georadar (1)
- glasiologi (5)
- havnivåstigning (1)
- innlandsis (3)
- isbre (1)
- iskjerner (2)
- isshelf (1)
- klimaendringer (1)
- klimatologi (2)
- kontinentalsokkel (1)
- paleoklimatologi (1)
- smelting (1)
Resource type
- Journal Article (5)
Publication year
Online resource
- yes (5)