Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 8 resources
-
The coast-parallel Dronning Maud Land (DML) mountains represent a key nucleation site for the protracted glaciation of Antarctica. Their evolution is therefore of special interest for understanding the formation and development of the Antarctic ice sheet. Extensive glacial erosion has clearly altered the landscape over the past 34 Myr. Yet, the total erosion still remains to be properly constrained. Here, we investigate the power of low-temperature thermochronology in quantifying glacial erosion in-situ. Our data document the differential erosion along the DML escarpment, with up to c. 1.5 and 2.4 km of erosion in western and central DML, respectively. Substantial erosion at the escarpment foothills, and limited erosion at high elevations and close to drainage divides, is consistent with an escarpment retreat model. Such differential erosion suggests major alterations of the landscape during 34 Myr of glaciation and should be implemented in future ice sheet models.
-
Dronning Maud Land (DML) is a key area for the better understanding of the geotectonic history and amalgamation processes of the southern part of Gondwana. Here, we present comprehensive new zircon U–Pb–Hf–O, whole-rock Sm–Nd isotopic and geochemical data for late Neoproterozoic-Cambrian igneous rocks along a profile from central to eastern DML, which provides new insights into the crustal evolution and tectonics of the region. In central DML, magmatism dominantly occurred at 530–485 Ma, with 650–600 Ma charnockite and anorthosite locally distributed at its eastern periphery. In contrast, eastern DML experienced long-term and continuous granitic magmatism from ca. 650 Ma to 500 Ma. In central DML, the 650–600 Ma samples are characterized by highly elevated δ18O (7.5–9.5‰) associated with slightly negative to positive εHf(t) values (−1 to +3), indicating significant addition of high-δ18O crustal components, such as sedimentary material at the margin of the Kalahari Craton. Evolved Hf isotopic signatures (εHf(t) = −15 to −6) and moderately elevated O isotopic data (δ18O = 6–8‰) of the Cambrian granitic rocks from central DML indicate a significant incorporation of the pre-existing, old continental crust. In eastern DML, the suprachondritic Hf–Nd isotope signatures and moderate δ18O values of the late Neoproterozoic granites (650–550 Ma) from the Sør Rondane Mountains support the view that they mainly originated from crust of the Tonian Oceanic Arc Super Terrane (TOAST). The post-540 Ma granites, however, have more evolved Hf and Nd isotopic compositions, suggesting an increasing involvement of older continental components during Cambrian magmatism. Nd isotopes of the Cambrian granitic rocks in DML display an increasingly more radiogenic composition towards the east with model ages ranging from late Archean to Mesoproterozoic times, which is in line with the isotopic trend of the Precambrian basement in this region. The late Neoproterozoic (>600 Ma) igneous rocks in central and eastern DML were emplaced in two independent subduction systems, at the periphery of the eastern Kalahari Craton and somewhere within the Mozambique Ocean respectively. The accretion and assembly of the TOAST to the eastern margin of the Kalahari Craton and their collision with surrounding continental blocks was followed by extensive post-collisional magmatism due to delamination tectonics and orogenic collapse in the Cambrian. The late Neoproterozoic–Cambrian igneous rocks in DML thus record an orogenic cycle from subduction-accretion, continental collision to post-collisional process during and after the assembly of Gondwana.
-
The East Antarctic Ice Sheet (EAIS) is generally assumed to have been relatively insensitive to Quaternary climate change. However, recent studies have shown potential instabilities in coastal, marine sectors of the EAIS. In addition, long-term climate reconstructions and modelling experiments indicate the potential for significant changes in ice volume and ice sheet configuration since the Pliocene. Hence, more empirical evidence for ice surface and ice volume changes is required to discriminate between contrasting inferences. MAGIC-DML is an ongoing Swedish-US-Norwegian-German-UK collaboration focused on improving ice sheet models by filling critical data gaps that exist in our knowledge of the timing and pattern of ice surface changes along the western Dronning Maud Land (DML) margin and combining this with advances in numerical techniques. Here, we report cosmogenic multi-nuclide data from bedrock and erratics at 72 sample locations on nunatak ranges from Heimefrontfjella to along Penck-Jutulstraumen ice stream throughs in western Dronning Maud Land. The sample locations span elevations between 741-2437 m above sea level, and record apparent exposure ages between <2 ka and >5 Ma. The highest bedrock samples, from high on the inland nunatak ranges, indicate continuous exposure since >5 Ma, with a very low erosion rate of 15±3 cm Ma-1. These results indicate that the ice sheet has not extensively buried and eroded these mountain ranges since at least the Pliocene Moreover, and in contrast to current studies in eastern Dronning Maud Land, we record clear indications of a thicker-than-present ice sheet along the Penck-Jutulstraumen throughs within the last glacial cycle, with a thinning of ~35-120 m towards the present ice surface on several nunataks during the Holocene (~2-11 ka). These results thus indicate ice-surface fluctuations of several hundred meters between the current grounding line and the edge of the polar plateau for the last glacial cycle.
-
The Maud Belt of East Antarctica represents a late Mesoproterozoic orogen along the periphery of the Proto-Kalahari Craton, and a better understanding of its orogenic nature helps to elucidate the configuration of Kalahari within the Rodinia supercontinent. In this study, we present original and compiled zircon U–Pb geochronological and Hf isotopic data spanning ca. 1180 to 950 Ma along with whole-rock Nd isotopes, covering a broad expanse of the Maud Belt and the adjacent Archean Grunehogna Craton, in an attempt to delineate the spatial and temporal patterns of isotopic compositions and evolution, and to better understand the orogenic architecture and style. Spatial isotopic variations are particularly evident in the western front of the orogen (western H.U. Sverdrupfjella) in contrast to other regions. The former exhibits a wide range of isotopic compositions, with the majority showing highly evolved signatures, indicating that the orogenic crust developed through the reworking of pre-existing Archean–Paleoproterozoic continental crust. In contrast, most other regions of the Maud Belt are characterized by relatively juvenile Hf and Nd isotopic compositions, which are interpreted to be derived from a mixture of juvenile magmas and Paleoproterozoic crust. The Hf isotopic evolution from 1180 Ma to 950 Ma indicates significantly less reworking of pre-existing continental crust compared to other contemporaneous Rodinia-forming orogens, including the Grenville Orogen itself, and emphasizes a predominant addition of juvenile material, implying a continuous subduction process. The isotopic investigation in this study, combined with the geological and paleomagnetic evidence, indicates that the Maud Belt most likely represents an exterior accretionary orogen along the eastern margin of the Proto-Kalahari Craton, rather than being part of the continental collision zones that led to Rodinia amalgamation.
-
This study focusses on the Grenville-age Maud Belt in Dronning Maud Land (DML), East Antarctica, which was located at the margin of the Proto-Kalahari Craton during the assembly of Rodinia. We present new U–Pb zircon ages and Hf–O isotope analyses of mafic and granitic gneisses exposed in the Orvin-Wohlthat Mountains and Gjelsvikfjella, central DML (cDML). The geochronological data indicate continuous magmatic activity from 1160 to 1070 Ma which culminated at 1110–1090 Ma, followed by high-grade metamorphism between 1080 and 1030 Ma. The majority of zircons from the Orvin-Wohlthat Mountains exhibit radiogenic Hf isotopic compositions corresponding to suprachondritic εHf (t) values and Mesoproterozoic model ages, indicating crystallization from predominantly juvenile magmas. However, the involvement of ancient sedimentary material, which were most likely derived from the adjacent Proto-Kalahari Craton, is revealed by a few samples with negative to neutral εHf (t) and significantly elevated δ18O values (8–10‰). Samples from further west, in Gjelsvikfjella have more mantle-like zircon O isotopic compositions and late Paleoproterozoic Hf model ages, indicating the incorporation of ancient, previously mantle-derived continental crust. The rocks in cDML, thus define part of an extensive Mesoproterozoic magmatic arc with subduction under the Proto-Kalahari margin. This involved significant growth of new continental crust, possibly related to slab retreat, accompanied by subordinate recycling of older crustal components. The Maud Belt has previously been correlated with the 1250–1030 Ma Natal Belt in southern Africa, which lay to the west in the context of Gondwana, although this assertion has recently been questioned. Our study supports the latter view in demonstrating that the continental arc magmatism in the Maud Belt appears to be temporally and tectonically unconnected to the accretion of (slightly older) juvenile oceanic islands in the Natal Belt, which, in contrast to the Maud Belt, show subduction polarity away from the craton. We thus speculate that the Namaqua-Natal to Maud Belt contact (exposed in the Heimefront Shear Zone) may represent a changed tectonic environment from arc/continent-continent collision to slightly younger continental margin orogenesis at the westernmost termination of this part of the global Grenville Orogen. The Maud Belt marks the beginning of a major, long-lived accretionary Andean-type tectonic regime on the eastern margin of Proto-Kalahari in the Meso-Neoproterozoic during Rodinia assembly and break-up until the formation of Gondwana.
-
Late Tonian (ca. 785–760 Ma) granodioritic to granitic orthogneisses of the Schirmacher Oasis region in Dronning Maud Land (DML), East Antarctica, are interpreted as recording an active continental margin setting at the periphery of Kalahari and Rodinia. The rocks probably represent exposures of a significant tectonic province hidden beneath the ice, the erosional remnants of which are recorded as detrital zircons in late Tonian-Cryogenian metasedimentary rocks throughout central and eastern DML, as well as in ice-rafted debris from recent sediments offshore Dronning Maud Land. The orthogneisses have single-stage Sm-Nd model ages of ca. 1.3–1.5 Ga and zircon Hf-signatures (εHft = +2 – +5), indistinguishable from the adjacent Grenville-age basement rocks of easternmost Kalahari. Their geochemistry suggests that they evolved in the late stages of a continental margin magmatic arc and possibly within a roll-back tectonic framework, suggestive of subduction of relatively old oceanic lithosphere. The eastern Kalahari continental arc is one of a number of continental arcs that characterize the western part of the fragmenting Rodinia and document the supercontinent “turning inside out” after its formation at ca. 1000 Ma and a period of relative tectonic quiescence between ca. 900 and 800 Ma. The rocks show an ultra-high temperature metamorphic overprint that was accompanied by syn-tectonic magmatism from ca. 650 to 600 Ma. The high temperature metamorphism is interpreted to relate to back-arc extension that also led to major anorthosite magmatism elsewhere, prior to continental collision in the region. The rocks lack the subsequent widespread high-grade metamorphic overprint at ca. 590–500 Ma which occurs in the adjacent regions due to Himalayan-style continental collision along the East African-Antarctic Orogen during Gondwana assembly.
-
A dataset to describe exposed bedrock and surficial geology of Antarctica has been constructed by the GeoMAP Action Group of the Scientific Committee on Antarctic Research (SCAR) and GNS Science. Our group captured existing geological map data into a geographic information system (GIS), refined its spatial reliability, harmonised classification, and improved representation of glacial sequences and geomorphology, thereby creating a comprehensive and coherent representation of Antarctic geology. A total of 99,080 polygons were unified for depicting geology at 1:250,000 scale, but locally there are some areas with higher spatial resolution. Geological unit definition is based on a mixed chronostratigraphic- and lithostratigraphic-based classification. Description of rock and moraine polygons employs the international Geoscience Markup Language (GeoSciML) data protocols to provide attribute-rich and queryable information, including bibliographic links to 589 source maps and scientific literature. GeoMAP is the first detailed geological map dataset covering all of Antarctica. It depicts ‘known geology’ of rock exposures rather than ‘interpreted’ sub-ice features and is suitable for continent-wide perspectives and cross-discipline interrogation.
Explore
Topic
- Antarktis (1)
- Dronning Maud Land (7)
- geokjemi (2)
- geokronologi (3)
- geologi (8)
- geomorfologi (2)
- paleogeografi (1)
- paleomagnetisme (1)
- termokronologi (1)
Resource type
- Conference Paper (2)
- Journal Article (6)