Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 6 resources
-
If all the ice in the Antarctic ice sheet were to melt, the world’s oceans would rise about 58 metres. Although nobody expects anything that dramatic to happen, current knowledge doesn’t tell us what we might actually expect. The Fimbulisen project should help eliminate some of the uncertainty.
-
Nearly three decades of stable isotope ratios and surface mass balance (SMB) data from eight shallow firn cores retrieved at Fimbul Ice Shelf, East Antarctica, in the Austral summers 2009–2011 have been investigated. An additional longer core drilled in 2000/2001 extends the series back to the early eighteenth century. Isotope ratios and SMB from the stacked record of all cores were also related to instrumental temperature data from Neumayer Station on Ekström Ice Shelf. Since the second half of the twentieth century, the SMB shows a statistically significant negative trend, whereas the δ18O of the cores shows a significant positive trend. No trend is found in air temperature at the nearest suitable weather station, Neumayer (available since 1981). This does not correspond to the statistically significant positive trend in Southern Annular Mode (SAM) index, which is usually associated with a cooling of East Antarctica. SAM index and SMB are negatively correlated, which might be explained by a decrease in meridional exchange of energy and moisture leading to lower precipitation amounts. Future monitoring of climate change on the sensitive Antarctic ice shelves is necessary to assess its consequences for sea level change.
-
Holocene climate variability in the southeast Atlantic sector of the Southern Ocean and Antarctic is assessed and quantified through integration of available marine sediment core and Antarctic ice core data. We use summer sea surface temperature (SSST) and sea ice presence (SIP) reconstructions from two marine sediment cores recovered north (50 °S) and south (53.2 °S) of the present day Antarctic Polar Front (APF), as well as an atmospheric temperature and sea ice proxy from the EPICA ice core from Dronning Maud Land (EDML). We find reasonably good agreement in the timing of climate evolution in the analyzed series. Almost all records show a gradual glacial-to-Holocene climate transition, interrupted by the Antarctic cold reversal around 13 000 cal yr BP, and early Holocene climatic optimum (HCO) at about 11 000 cal yr BP. During the early HCO, the seasonal ice cover retreats to south of 53 °S; it then readvances in the course of the mid- to late Holocene. The maximum winter sea ice edge position during the recent 10 000 years varied mainly within 51–53 °S, with sporadic growth to north of 50 °S, a position similar to that during the last glacial. The onset of the Neoglacial period after ca 4000 yr BP is associated with a steepening of the SSST gradient between the marine core sites, strengthening of the westerlies and cooling in the inland ice sheet. The agreement in timing between elevated SSST during the early HCO and decreased deuterium excess in EDML and other ice cores from different locations in the East Antarctic suggests that the retreat of sea ice during the early HCO and weakening of the APF was a general feature of the East Antarctic climate during that time.
-
Enhanced snowfall on the East Antarctic ice sheet is projected to significantly mitigate 21st century global sea level rise. In recent years (2009 and 2011), regionally extreme snowfall anomalies in Dronning Maud Land, in the Atlantic sector of East Antarctica, have been observed. It has been unclear, however, whether these anomalies can be ascribed to natural decadal variability, or whether they could signal the beginning of a long-term increase of snowfall. Here we use output of a regional atmospheric climate model, evaluated with available firn core records and gravimetry observations, and show that such episodes had not been seen previously in the satellite climate data era (1979). Comparisons with historical data that originate from firn cores, one with records extending back to the 18th century, confirm that accumulation anomalies of this scale have not occurred in the past ~60 years, although comparable anomalies are found further back in time. We examined several regional climate model projections, describing various warming scenarios into the 21st century. Anomalies with magnitudes similar to the recently observed ones were not present in the model output for the current climate, but were found increasingly probable toward the end of the 21st century.
-
Many challenges remain for estimating the Antarctic ice sheet surface mass balance (SMB), which represents a major uncertainty in predictions of future sea-level rise. Validating continental scale studies is hampered by the sparse distribution of in situ data. Here we present a 26 year mean SMB of the Fimbul ice shelf in East Antarctica between 1983–2009, and recent interannual variability since 2010. We compare these data to the results of large-scale SMB studies for similar time periods, obtained from regional atmospheric modeling and remote sensing. Our in situ data include ground penetrating radar, firn cores, and mass balance stakes and provide information on both temporal and spatial scales. The 26 year mean SMB on the Fimbul ice shelf varies between 170 and 620 kg m−2 a−1 giving a regional average value of 310 ± 70 kg m−2 a−1. Our measurements indicate higher long-term accumulation over large parts of the ice shelf compared to the large-scale studies. We also show that the variability of the mean annual SMB, which can be up to 90%, can be a dominant factor in short-term estimates. The results emphasize the importance of using a combination of ground-based validation data, regional climate models, and remote sensing over a relevant time period in order to achieve a reliable SMB for Antarctica.
Explore
Topic
- klimaendringer
- Antarktis (2)
- brehylle (1)
- Det Internasjonale polaråret 2007 (1)
- Dronning Maud Land (5)
- geofysikk (1)
- geologi (1)
- glasiologi (6)
- global oppvarming (1)
- havnivåstigning (4)
- holocene (1)
- innlandsis (3)
- isbrem (2)
- iskjerner (1)
- isshelf (2)
- klimatologi (2)
- meteorologi (1)
- oseanografi (1)
- paleoklimatologi (1)
- polarforskning (1)
- smelting (1)
- Sørishavet (1)
- stabile isotoper (1)
Resource type
- Book Section (1)
- Journal Article (5)