Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 33 resources
-
If all the ice in the Antarctic ice sheet were to melt, the world’s oceans would rise about 58 metres. Although nobody expects anything that dramatic to happen, current knowledge doesn’t tell us what we might actually expect. The Fimbulisen project should help eliminate some of the uncertainty.
-
To investigate recent variability in accumulation and δ18O, we synthesize data from five snow cores, covering the period 1932–96, from the sector 16˚38’ W–4˚48’ E in coastal Dronning Maud Land (DML), Antarctica. the δ18O records from the different sites are remarkably similar and suggest a common stable moisture source for this coastal section of DML. While the accumulation pattern is local, and specific features restricted to the individual sites, the overall accumulation pattern is related to the temperature variability as indicated by coastal instrumental records. Accumulation and δ18O correlate between 1955 and 1985 but deviate thereafter, with the proxy-temperature record showing a positive trend while accumulation decreased. This occurs at the same time as an increase in sea-ice extent in the area, which may have resulted in circulation changes and more northerly storm paths. Both stacked accumulation and δ18O records show that large-scale atmospheric signals, as well as some pronounced individual events, are recorded in DML coastal ice cores.
-
During the Swedish Antarctic Expedition to Dronning Maud Land, Antarctica, 1988–89 the net accumulation was estimated for an area from the coast to about 400 km inland. Stake measurements were used to obtain the spatial variability and firn cores were used for the temporal variability. The mean annual accumulation for the period 1976–88 is about 0.4mw.e. for Riiser-Larsenisen and about 0.3mw.e. for the area above the grounding line. The accumulation rate at higher altitudes, > 2500 m a.s.1., is about 0.1 m w.e. for 1955–88. One record from the ice shelf covers the period 1957–88, and suggests an increase in accumulation of about 12%. Between 1976 and 1988, the accumulation has decreased by about 50%, most likely due to lower temperatures as suggested by the temperature record from Halley.
-
Satellite remote sensing is a convenient tool for studying snow and glacier ice, allowing us to conduct research over large and otherwise inaccessible areas. This paper reviews various methods for measuring snow and glacier ice properties with satellite remote sensing. These methods have been improving with the use of new satellite sensors, like the synthetic aperture radar (SAR) during the last decade, leading to the development of new and powerful methods, such as SAR interferometry for glacier velocity, digital elevation model generation of ice sheets, or snow cover mapping. Some methods still try to overcome the limitations of present sensors, but future satellites will have much increased capability, for example, the ability to measure the whole optical spectrum or SAR sensors with multiple polarization or frequencies. Among the methods presented are the satellite-derived determination of surface albedo, snow extent, snow volume, snow grain size, surface temperature, glacier facies, glacier velocities, glacier extent, and ice sheet topography. In this review, emphasis is put on the principles and theory of each satellite remote sensing method. An extensive list of references, with an emphasis on studies from the 1990s, allows the reader to delve into specific topics.
-
The mass balance of Antarctica is one of the crucial factors for determining sea-level change in a warming climate. The marginal zones of the continent, namely the ice shelves, are most sensitive to climate change. During the 2009/10 austral summer an extensive glaciological field campaign was carried out on Fimbulisen, an ice shelf in East Antarctica, to investigate its recent surface mass balance. Shallow (10–18 m) firn cores were drilled and accumulation rates and stable-isotope ratios determined. For firn-core dating, two different methods were compared: (1) seasonal variations of stable oxygen isotope ratios (δ18O), and (2) dielectric profiling, including using the volcanic eruptions of Pinatubo, Philippines (1991), and El Chichόn, Mexico (1982), as time markers. The mean annual accumulation for the period 1992–2009 ranges from 298 to 349 mmw.e. a–1. The interannual variability at the drilling sites is >30%. Accumulation rates show a weak decreasing trend during the past 20–30 years, which is statistically significant only for one of the cores. Stable-isotope ratios were compared to the snowfall temperature of Neumayer station. Neither the temperatures nor the δ18O values show any trend for the investigated time period.
-
Nearly three decades of stable isotope ratios and surface mass balance (SMB) data from eight shallow firn cores retrieved at Fimbul Ice Shelf, East Antarctica, in the Austral summers 2009–2011 have been investigated. An additional longer core drilled in 2000/2001 extends the series back to the early eighteenth century. Isotope ratios and SMB from the stacked record of all cores were also related to instrumental temperature data from Neumayer Station on Ekström Ice Shelf. Since the second half of the twentieth century, the SMB shows a statistically significant negative trend, whereas the δ18O of the cores shows a significant positive trend. No trend is found in air temperature at the nearest suitable weather station, Neumayer (available since 1981). This does not correspond to the statistically significant positive trend in Southern Annular Mode (SAM) index, which is usually associated with a cooling of East Antarctica. SAM index and SMB are negatively correlated, which might be explained by a decrease in meridional exchange of energy and moisture leading to lower precipitation amounts. Future monitoring of climate change on the sensitive Antarctic ice shelves is necessary to assess its consequences for sea level change.
-
During the austral summer 1993/1994, the spatial distribution of snow was mapped by a ground-based snow radar (800–2300 MHz) in western Dronning Maud Land, East Antarctica. Snow radar soundings were performed along continuous profiles extending from the ice shelf up to the polar plateau, a total distance of 1040 km. The high-resolution radar registrations revealed subsurface layering in the uppermost 12 m of the snowpack. The travel time record was translated into snow accumulation expressed in water equivalents, based on an empirical relationship between wave speed and firn density. A good knowledge on snow density variations with depth is essential for the variability studies. Generally, the snow layering was well developed in the coastal area and less well developed on the polar plateau. High spatial variability in snow accumulation was observed on a regional as well as on a local scale. The variability was very high in areas with large surface slopes, such as the grounding zone and around nunataks. The highest variability was recorded in the nunatak area, where the standard deviation reached 59% of the spatial average accumulation. On the smooth high-altitude plateau, variations in accumulation were less pronounced. However, here the standard deviation exceeded 22% of the average accumulation rate. Provided that the snow radar soundings are supported by dating of reference horizons along the travel route, this is a good method to obtain the accumulation rate and pattern for large areas with a high spatial resolution.
-
During 1996-97 a European Project for Ice Goring in Antarctica (EPIGA) pre-site surveying traverse worked in the area between 70° S, 5° E and 75° S, 15° E in Dronning Maud Land. We present data obtained from 10 and 20 m deep firn cores drilled between the coast and 600 km inland (to 3450 m a.s.l.). The cores were analyzed for electrical conductivity measurements and total β activity to obtain accumulation data between known time horizons. In addition, some of the cores were analyzed for oxygen isotopes. Annual accumulation varies from 271 mm we. at Fimbulisen to 24 mm we at 2840 m a.s.l. Accumulation at core sites 2400-3000 m a.s.l. has increased by 16-48% since 1965 compared to the 1955-65 period. However, the core sites above 3250 m a.s.l. and one core location on the ice shelf show a decrease during the same period. Furthermore, no change can be detected at the most inland site for the period 1815-1996. In all the cores the last few years seem to have been some of the warmest in these records.
-
We report in this study the distribution of 10Be in the top 40 m of the Renland ice core (East Greenland) and in a 30 m long core from DML (Dronning Maud Land, Antarctica) for the period 1931–1988. The two sites show differences in10Be content, the Antarctica site showing smaller variance and a lower average 10Be annual flux. Similarly, the average accumulation rate (cm water equivalent year−1) is higher in the Renland relative to DML. The variability in accumulation (precipitation) rates seems to explain part of the difference in10Be flux between the two polar sites. Cyclic fluctuations of 10Be flux correlate with the 11-year sunspot number and cosmic ray intensity than with the aa index (perturbation of the geomagnetic activity by the solar wind). Our data corroborate 10Be cyclic fluctuation pattern from the Dye 3 ice core and confirm a promising potential for correlation of global and local events.
-
As a result of intensive field activities carried out by several nations over the past 15 years, a set of accumulation measurements for western Dronning Maud Land, Antarctica, was collected, based on firn-core drilling and snow-pit sampling. This new information was supplemented by earlier data taken from the literature, resulting in 111 accumulation values. Using Geographical Information Systems software, a first region-wide mean annual snow-accumulation field was derived. In order to define suitable interpolation criteria, the accumulation records were analyzed with respect to their spatial autocorrelation and statistical properties. The resulting accumulation pattern resembles well- known characteristics such as a relatively wet coastal area with a sharp transition to the dry interior, but also reveals complex topographic effects. Furthermore, this work identifies new high-return shallowdrilling sites by uncovering areas of insufficient sampling density.
-
We use a network of eight ice cores from coastal Dronning Maud Land (DML), Antarctica, to examine the role of the tropical ENSO (El Niño-Southern Oscillation) in the temporal variability of δ18O in annual accumulation. The longest record from the S100 ice core covering the period 1737–1999 is used to analyze the teleconnections between the tropical Pacific and coastal DML on decadal scales and longer. A shorter stacked coastal DML δ18O series spanning 1955–1999 is constructed to assess the variability of ENSO teleconnection on interannual scales. Results suggest that, on typical ENSO timescales of 2–6 years, the strength of the teleconnection varies in time, being stronger for years with generally negative phase of the Southern Annular Mode (SAM). On the timescales of approximately two decades (bidecadal), positive isotope anomalies are associated with oceanic warming and a westward sea surface temperature (SST) gradient in the equatorial Pacific. Bidecadal variability in SAM, forced by the tropical Pacific, is proposed as a critical element in the teleconnection. Our analysis suggests that a multidecadal positive trend in the annual mean δ18O values from the analyzed cores can be indicative of the atmospheric warming that begun in this part of the DML already in the 1910s. The trend in δ18O, quantified in terms of long-term surface air temperature (SAT) changes, is consistent with the instrumental data. Yet, we speculate that the accurate estimation of SAT trends requires an assessment of the potential role of secular SAM and sea ice extent changes in shaping the isotopic signal.
-
[1] Ground-based accumulation measurements are scarce on the high East Antarctic plateau, but highly necessary for model validation and the interpretation of satellite data for the determination of Antarctic mass balance. Here, we present accumulation results obtained from four shallow firn cores drilled in the Antarctic summer season 2007/2008. The cores were drilled along the first leg of the Norwegian-US IPY traverse through East Antarctica, visiting sites like Plateau Station and Pole of Relative Inaccessibility that have been covered by the South Pole Queen Maud Land Traverses (SPQMLT) in the 1960s. Accumulation has been determined from volcanic chronology established from the conductivity records measured by dielectric profiling (DEP). The Tambora 1815/unknown 1809 double peak is clearly visible in the conductivity data and serves as a reliable time marker. Accumulation rates averaged over the period 1815–2007 are in the range of 16 to 32 kg m−2 a−1, somewhat lower than expected from the SPQMLT data. The spatial pattern is mainly influenced by elevation and continentality. Three of the firn cores show a decrease of more than 20% in accumulation for the time period 1815–2007 in relation to accumulation rates during the period 1641–1815. The spatial representativity of the firn cores is assessed by ground-penetrating radar, showing a rather smoothly layered pattern around the drill sites. Validation of the DEP results is utilized by comparison with chemistry data, proving the validity of the DEP method for dating firn cores. The results help understanding the status of the East Antarctic ice sheet and will be important for e.g. future model-derived estimates of the mass balance of Antarctica.
-
Enhanced snowfall on the East Antarctic ice sheet is projected to significantly mitigate 21st century global sea level rise. In recent years (2009 and 2011), regionally extreme snowfall anomalies in Dronning Maud Land, in the Atlantic sector of East Antarctica, have been observed. It has been unclear, however, whether these anomalies can be ascribed to natural decadal variability, or whether they could signal the beginning of a long-term increase of snowfall. Here we use output of a regional atmospheric climate model, evaluated with available firn core records and gravimetry observations, and show that such episodes had not been seen previously in the satellite climate data era (1979). Comparisons with historical data that originate from firn cores, one with records extending back to the 18th century, confirm that accumulation anomalies of this scale have not occurred in the past ~60 years, although comparable anomalies are found further back in time. We examined several regional climate model projections, describing various warming scenarios into the 21st century. Anomalies with magnitudes similar to the recently observed ones were not present in the model output for the current climate, but were found increasingly probable toward the end of the 21st century.
-
Ice shelves play an important role in stabilizing the interior grounded ice of the large ice sheets. The thinning of major ice shelves observed in recent years, possibly in connection to warmer ocean waters coming into contact with the ice-shelf base, has focused attention on the ice-ocean interface. Here we reveal a complex network of sub ice-shelf channels under the Fimbul Ice Shelf, Antarctica, mapped using ground-penetrating radar over a 100 km2 grid. The channels are 300–500 m wide and 50 m high, among the narrowest of any reported. Observing narrow channels beneath an ice shelf that is mainly surrounded by cold ocean waters, with temperatures close to the surface freezing point, shows that channelized basal melting is not restricted to rapidly melting ice shelves, indicating that spatial melt patterns around Antarctica are likely to vary on scales that are not yet incorporated in ice-ocean models.
-
Basal melt is a major cause of ice shelf thinning affecting the stability of the ice shelf and reducing its buttressing effect on the inland ice. The Fimbul ice shelf (FIS) in Dronning Maud Land (DML), East Antarctica, is fed by the fast-flowing Jutulstraumen glacier, responsible for 10% of ice discharge from the DML sector of the ice sheet. Current estimates of the basal melt rates of the FIS come from regional ocean models, autosub measurements, and satellite observations, which vary considerably. This discrepancy hampers evaluation of the stability of the Jutulstraumen catchment. Here, we present estimates of basal melt rates of the FIS using ground-based interferometric radar. We find a low average basal melt rate on the order of 1 m/yr, with the highest rates located at the ice shelf front, which extends beyond the continental shelf break. Furthermore, our results provide evidence for a significant seasonal variability.
-
Maritime historical documentary sources of weather and state of sea surface including sea ice can aid in filling a known climate knowledge gap for the Southern Ocean and Antarctica for the first half of the 20th century. This study presents a data set of marine climate, sea ice and icebergs recovered from a collection of logbooks from mainly Norwegian whaling factory ships that operated in the Southern Ocean during 1929-1940. The data set comprises some 8000 weather and 4000 sea ice/open sea records from austral summers of the study period. This paper further discusses the structure and content of most common Norwegian maritime documentary sources of the period along with the practices of logging information relevant for the study, such as time keeping, positioning and making weather observations. An emphasis was made on recovery of notes on sea ice and icebergs and their interpretation in terms of WMO categories of sea ice concentration. Data, including ship-related metadata from all individual documents are homogenized and structured to a common machine-readable format that simplifies its ingestion into relevant climate data depositories.
-
Volcanic signatures in ice-core records provide an excellent means to date the cores and obtain information about accumulation rates. From several ice cores it is thus possible to extract a spatio-temporal accumulation pattern. We show records of electrical conductivity and sulfur from 13 firn cores from the Norwegian-USA scientific traverse during the International Polar Year 2007–2009 (IPY) through East Antarctica. Major volcanic eruptions are identified and used to assess century-scale accumulation changes. The largest changes seem to occur in the most recent decades with accumulation over the period 1963–2007/08 being up to 25% different from the long-term record. There is no clear overall trend, some sites show an increase in accumulation over the period 1963 to present while others show a decrease. Almost all of the sites above 3200 m above sea level (asl) suggest a decrease. These sites also show a significantly lower accumulation value than large-scale assessments both for the period 1963 to present and for the long-term mean at the respective drill sites. The spatial accumulation distribution is influenced mainly by elevation and distance to the ocean (continentality), as expected. Ground-penetrating radar data around the drill sites show a spatial variability within 10–20% over several tens of kilometers, indicating that our drill sites are well representative for the area around them. Our results are important for large-scale assessments of Antarctic mass balance and model validation.
Explore
Topic
- akkumulasjon (3)
- Antarktis (13)
- biogeokjemi (1)
- biografi (1)
- brehylle (1)
- Det Internasjonale polaråret 2007 (1)
- Dronning Maud Land (20)
- ekspedisjoner (1)
- fjernmåling (1)
- flyfotografering (1)
- forskning (1)
- fysisk geografi (1)
- geofysikk (8)
- geografi (2)
- geokjemi (1)
- geologi (3)
- geovitenskap (3)
- glasiokjemi (1)
- glasiologi (28)
- global oppvarming (1)
- havnivåstigning (5)
- hvalfangst (1)
- innlandsis (9)
- isberg (1)
- isbre (1)
- isbreer (1)
- isbrem (2)
- iskjerner (9)
- isshelf (4)
- kartlegging (1)
- kjemi (1)
- klima (4)
- klimaendringer (6)
- klimamodeller (1)
- klimatologi (9)
- kontinentalsokkel (1)
- kryosfæren (1)
- målinger (1)
- meteorologi (4)
- mikrobielle organismer (1)
- mikrobiologi (1)
- miljø (1)
- Norsk Polarinstitutt (1)
- paleoklimatologi (3)
- polarforskning (1)
- polarområdene (3)
- satellite bilder (2)
- satellite mikrobølgesensorer (1)
- sjøis (1)
- skipsloggbøker (1)
- smelting (2)
- snø (2)
- Sørishavet (2)
- stabile isotoper (1)
- stratigrafi (1)
- temperatur (1)
- Thorshavn ekspedisjon (1)
- topografi (1)
- transantarktiske ekspedisjoner (2)
- vulkaner (1)
Resource type
- Book Section (1)
- Journal Article (32)