Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 16 resources
-
Soloppvarmet overflatevann er en sentral varmekilde som bidrar til smelting av isbremmen Fimbulisen i Dronning Maud Land.
-
Changes in ocean-driven basal melting have a key influence on the stability of ice shelves, the mass loss from the ice sheet, ocean circulation, and global sea level rise. Coupled ice sheet–ocean models play a critical role in understanding future ice sheet evolution and examining the processes governing ice sheet responses to basal melting. However, as a new approach, coupled ice sheet–ocean systems come with new challenges, and the impacts of solutions implemented to date have not been investigated. An emergent feature in several contributing coupled models to the 1st Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP1) was a time-varying oscillation in basal melt rates. Here, we use a recently developed coupling framework, FISOC (v1.1), to connect the modified ocean model ROMSIceShelf (v1.0) and ice sheet model Elmer/Ice (v9.0), to investigate the origin and implications of the feature and, more generally, the impact of coupled modeling strategies on the simulated basal melt in an idealized ice shelf cavity based on the MISOMIP setup. We found the spatial-averaged basal melt rates (3.56 m yr−1) oscillated with an amplitude ∼0.7 m yr−1 and approximate period of ∼6 years between year 30 and 100 depending on the experimental design. The melt oscillations emerged in the coupled system and the standalone ocean model using a prescribed change of cavity geometry. We found that the oscillation feature is closely related to the discretized ungrounding of the ice sheet, exposing new ocean, and is likely strengthened by a combination of positive buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and the frequent coupling of ice geometry and ocean evolution. Sensitivity tests demonstrate that the oscillation feature is always present, regardless of the choice of coupling interval, vertical resolution in the ocean model, tracer properties of cells ungrounded by the retreating ice sheet, or the dependency of friction velocities to the vertical resolution. However, the amplitude, phase, and sub-cycle variability of the oscillation varied significantly across the different configurations. We were unable to ultimately determine whether the feature arises purely due to numerical issues (related to discretization) or a compounding of multiple physical processes amplifying a numerical artifact. We suggest a pathway and choices of physical parameters to help other efforts understand the coupled ice sheet–ocean system using numerical models.
-
The buttressing potential of ice shelves is modulated by changes in subshelf melting, in response to changing ocean conditions. We analyze the temporal variability in subshelf melting using an autonomous phase-sensitive radio-echo sounder near the grounding line of the Roi Baudouin Ice Shelf in East Antarctica. When combined with additional oceanographic evidence of seasonal variations in the stratification and the amplification of diurnal tides around the shelf break topography (Gunnerus Bank), the results suggest an intricate mechanism in which topographic waves control the seasonal melt rate variability near the grounding line. This mechanism has not been considered before and has the potential to enhance local melt rates without advecting different water masses. As topographic waves seem to strengthen in a stratified ocean, the freshening of Antarctic surface water, predicted by observations and models, is likely to increase future basal melting in this area.
-
Understanding how climate change influences ocean-driven melting of the Antarctic ice shelves is one of the greatest challenges for projecting future sea level rise. The East Antarctic ice shelf cavities host cold water masses that limit melting, and only a few short-term observational studies exist on what drives warm water intrusions into these cavities. We analyse nine years of continuous oceanographic records from below Fimbulisen and relate them to oceanic and atmospheric forcing. On monthly time scales, warm inflow events are associated with weakened coastal easterlies reducing downwelling in front of the ice shelf. Since 2016, however, we observe sustained warming, with inflowing Warm Deep Water temperatures reaching above 0 °C. This is concurrent with an increase in satellite-derived basal melt rates of 0.62 m yr−1, which nearly doubles the basal mass loss at this relatively cold ice shelf cavity. We find that this transition is linked to a reduction in coastal sea ice cover through an increase in atmosphere–ocean momentum transfer and to a strengthening of remote subpolar westerlies. These results imply that East Antarctic ice shelves may become more exposed to warmer waters with a projected increase of circum-Antarctic westerlies, increasing this region’s relevance for sea level rise projections.
-
Understanding changes in Antarctic ice shelf basal melting is a major challenge for predicting future sea level. Currently, warm Circumpolar Deep Water surrounding Antarctica has limited access to the Weddell Sea continental shelf; consequently, melt rates at Filchner-Ronne Ice Shelf are low. However, large-scale model projections suggest that changes to the Antarctic Slope Front and the coastal circulation may enhance warm inflows within this century. We use a regional high-resolution ice shelf cavity and ocean circulation model to explore forcing changes that may trigger this regime shift. Our results suggest two necessary conditions for supporting a sustained warm inflow into the Filchner Ice Shelf cavity: (i) an extreme relaxation of the Antarctic Slope Front density gradient and (ii) substantial freshening of the dense shelf water. We also find that the on-shelf transport over the western Weddell Sea shelf is sensitive to the Filchner Trough overflow characteristics.
-
We are in a period of rapidly accelerating change across the Antarctic continent and Southern Ocean, with land ice loss leading to sea level rise and multiple other climate impacts. The ice-ocean interactions that dominate the current ice loss signal are a key underdeveloped area of knowledge. The paucity of direct and continuous observations leads to high uncertainty in the glaciological, oceanographic and atmospheric fields required to constrain ice-ocean interactions, and there is a lack of standardised protocols for reconciling observations across different platforms and technologies and modelled outputs. Funding to support observational campaigns is under increasing pressure, including for long-term, internationally coordinated monitoring plans for the Antarctic continent and Southern Ocean. In this Practice Bridge article, we outline research priorities highlighted by the international ice-ocean community and propose the development of a Framework for UnderStanding Ice-Ocean iNteractions (FUSION), using a combined observational-modelling approach, to address these issues. Finally, we propose an implementation plan for putting FUSION into practice by focusing first on an essential variable in ice-ocean interactions: ocean-driven ice shelf melt.
-
Ice shelves play an important role in stabilizing the interior grounded ice of the large ice sheets. The thinning of major ice shelves observed in recent years, possibly in connection to warmer ocean waters coming into contact with the ice-shelf base, has focused attention on the ice-ocean interface. Here we reveal a complex network of sub ice-shelf channels under the Fimbul Ice Shelf, Antarctica, mapped using ground-penetrating radar over a 100 km2 grid. The channels are 300–500 m wide and 50 m high, among the narrowest of any reported. Observing narrow channels beneath an ice shelf that is mainly surrounded by cold ocean waters, with temperatures close to the surface freezing point, shows that channelized basal melting is not restricted to rapidly melting ice shelves, indicating that spatial melt patterns around Antarctica are likely to vary on scales that are not yet incorporated in ice-ocean models.
-
Basal melt is a major cause of ice shelf thinning affecting the stability of the ice shelf and reducing its buttressing effect on the inland ice. The Fimbul ice shelf (FIS) in Dronning Maud Land (DML), East Antarctica, is fed by the fast-flowing Jutulstraumen glacier, responsible for 10% of ice discharge from the DML sector of the ice sheet. Current estimates of the basal melt rates of the FIS come from regional ocean models, autosub measurements, and satellite observations, which vary considerably. This discrepancy hampers evaluation of the stability of the Jutulstraumen catchment. Here, we present estimates of basal melt rates of the FIS using ground-based interferometric radar. We find a low average basal melt rate on the order of 1 m/yr, with the highest rates located at the ice shelf front, which extends beyond the continental shelf break. Furthermore, our results provide evidence for a significant seasonal variability.
-
Floating ice shelves are the Achilles’ heel of the Antarctic Ice Sheet. They limit Antarctica’s contribution to global sea level rise, yet they can be rapidly melted from beneath by a warming ocean. At Filchner-Ronne Ice Shelf, a decline in sea ice formation may increase basal melt rates and accelerate marine ice sheet mass loss within this century. However, the understanding of this tipping-point behavior largely relies on numerical models. Our new multi-annual observations from five hot-water drilled boreholes through Filchner-Ronne Ice Shelf show that since 2015 there has been an intensification of the density-driven ice shelf cavity-wide circulation in response to reinforced wind-driven sea ice formation in the Ronne polynya. Enhanced southerly winds over Ronne Ice Shelf coincide with westward displacements of the Amundsen Sea Low position, connecting the cavity circulation with changes in large-scale atmospheric circulation patterns as a new aspect of the atmosphere-ocean-ice shelf system.
-
A climatically induced acceleration in ocean-driven melting of Antarctic ice shelves would have consequences for both the discharge of continental ice into the ocean and thus global sea level, and for the formation of Antarctic Bottom Water and the oceanic meridional overturning circulation. Using a novel gas-tight in situ water sampler, noble gas samples have been collected from six locations beneath the Filchner Ice Shelf, the first such samples from beneath an Antarctic ice shelf. Helium and neon are uniquely suited as tracers of glacial meltwater in the ocean. Basal meltwater fractions range from 3.6% near the ice shelf base to 0.5% near the sea floor, with distinct regional differences. We estimate an average basal melt rate for the Filchner-Ronne Ice Shelf of 177 ± 95 Gt/year, independently confirming previous results. We calculate that up to 2.7% of the meltwater has been refrozen, and we identify a local source of crustal helium.
-
Curvilinear channels on the surface of an ice shelf indicate the presence of large channels at the base. Modelling studies have shown that where these surface expressions intersect the grounding line, they coincide with the likely outflow of subglacial water. An understanding of the initiation and the ice–ocean evolution of the basal channels is required to understand the present behaviour and future dynamics of ice sheets and ice shelves. Here, we present focused active seismic and radar surveys of a basal channel, ∼950 m wide and ∼200 m high, and its upstream continuation beneath Support Force Glacier, which feeds into the Filchner Ice Shelf, West Antarctica. Immediately seaward from the grounding line, below the basal channel, the seismic profiles show an ∼6.75 km long, 3.2 km wide and 200 m thick sedimentary sequence with chaotic to weakly stratified reflections we interpret as a grounding line fan deposited by a subglacial drainage channel directly upstream of the basal channel. Further downstream the seabed has a different character; it consists of harder, stratified consolidated sediments, deposited under different glaciological circumstances, or possibly bedrock. In contrast to the standard perception of a rapid change in ice shelf thickness just downstream of the grounding line, we find a flat topography of the ice shelf base with an almost constant ice thickness gradient along-flow, indicating only little basal melting, but an initial widening of the basal channel, which we ascribe to melting along its flanks. Our findings provide a detailed view of a more complex interaction between the ocean and subglacial hydrology to form basal channels in ice shelves.
-
The shape of ice shelf cavities are a major source of uncertainty in understanding ice-ocean interactions. This limits assessments of the response of the Antarctic ice sheets to climate change. Here we use vibroseis seismic reflection surveys to map the bathymetry beneath the Ekström Ice Shelf, Dronning Maud Land. The new bathymetry reveals an inland-sloping trough, reaching depths of 1,100 m below sea level, near the current grounding line, which we attribute to erosion by palaeo-ice streams. The trough does not cross-cut the outer parts of the continental shelf. Conductivity-temperature-depth profiles within the ice shelf cavity reveal the presence of cold water at shallower depths and tidal mixing at the ice shelf margins. It is unknown if warm water can access the trough. The new bathymetry is thought to be representative of many ice shelves in Dronning Maud Land, which together regulate the ice loss from a substantial area of East Antarctica.
-
Locally grounded features in ice shelves, called ice rises and rumples, play a key role buttressing discharge from the Antarctic Ice Sheet and regulating its contribution to sea level. Ice rises typically rise several hundreds of meters above the surrounding ice shelf; shelf flow is diverted around them. On the other hand, shelf ice flows across ice rumples, which typically rise only a few tens of meters above the ice shelf. Ice rises contain rich histories of deglaciation and climate that extend back over timescales ranging from a few millennia to beyond the last glacial maximum. Numerical model results have shown that the buttressing effects of ice rises and rumples are significant, but details of processes and how they evolve remain poorly understood. Fundamental information about the conditions and processes that cause transitions between floating ice shelves, ice rises and ice rumples is needed in order to assess their impact on ice-sheet behavior. Targeted high-resolution observational data are needed to evaluate and improve prognostic numerical models and parameterizations of the effects of small-scale pinning points on grounding-zone dynamics.
-
Projections of the sea level contribution from the Greenland and Antarctic ice sheets rely on atmospheric and oceanic drivers obtained from climate models. The Earth System Models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) generally project greater future warming compared with the previous CMIP5 effort. Here we use four CMIP6 models and a selection of CMIP5 models to force multiple ice sheet models as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We find that the projected sea level contribution at 2100 from the ice sheet model ensemble under the CMIP6 scenarios falls within the CMIP5 range for the Antarctic ice sheet but is significantly increased for Greenland. Warmer atmosphere in CMIP6 models results in higher Greenland mass loss due to surface melt. For Antarctica, CMIP6 forcing is similar to CMIP5 and mass gain from increased snowfall counteracts increased loss due to ocean warming.
-
The land ice contribution to global mean sea level rise has not yet been predicted using ice sheet and glacier models for the latest set of socio-economic scenarios, nor using coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects generated a large suite of projections using multiple models, but primarily used previous-generation scenarios and climate models, and could not fully explore known uncertainties. Here we estimate probability distributions for these projections under the new scenarios using statistical emulation of the ice sheet and glacier models. We find that limiting global warming to 1.5 degrees Celsius would halve the land ice contribution to twenty-first-century sea level rise, relative to current emissions pledges. The median decreases from 25 to 13 centimetres sea level equivalent (SLE) by 2100, with glaciers responsible for half the sea level contribution. The projected Antarctic contribution does not show a clear response to the emissions scenario, owing to uncertainties in the competing processes of increasing ice loss and snowfall accumulation in a warming climate. However, under risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 centimetres SLE under current policies and pledges, with the 95th percentile projection exceeding half a metre even under 1.5 degrees Celsius warming. This would severely limit the possibility of mitigating future coastal flooding. Given this large range (between 13 centimetres SLE using the main projections under 1.5 degrees Celsius warming and 42 centimetres SLE using risk-averse projections under current pledges), adaptation planning for twenty-first-century sea level rise must account for a factor-of-three uncertainty in the land ice contribution until climate policies and the Antarctic response are further constrained.
Explore
Topic
- glasiologi
- Antarktis (8)
- batymetri (1)
- brehylle (1)
- bunnvann (1)
- Dronning Maud Land (4)
- geofysikk (1)
- geovitenskap (1)
- havis (1)
- havnivå (1)
- havnivåstigning (5)
- innlandsis (9)
- isbre (1)
- isbrem (3)
- isshelf (8)
- issmelting (1)
- klima (2)
- klimaendringer (4)
- klimamodeller (1)
- klimatologi (5)
- kontinentalsokkel (2)
- meteorologi (1)
- oseanografi (7)
- polarområdene (2)
- satellite bilder (1)
- satellite mikrobølgesensorer (1)
- seismologi (1)
- smelting (5)
- Sørishavet (10)
- vannmasser (2)
- Weddellhavet (2)
Resource type
- Journal Article (16)