Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • Basal melting of Antarctic ice shelves significantly contributes to ice sheet mass loss, with distinct regional disparities in melt rates driven by ocean properties. In Dronning Maud Land (DML), East Antarctica, cold water predominantly fills the ice shelf cavities, resulting in generally low annual melt rates. In this study, we present a 4-year record of basal melt rates at the Ekström Ice Shelf, measured using an autonomous phase-sensitive radio-echo sounder (ApRES). Observations reveal a low mean annual melt rate of 0.44 m a−1, with a seasonal variability. Enhanced melting occurs in winter and spring, peaking at over 1 m a−1, while rates are decreased in summer and autumn. We hypothesise that the dense water formed during sea-ice formation erodes the water column stratification during late winter and spring, leading to an increase in the buoyancy of the ice shelf water plume. An idealised plume model supports this hypothesis, indicating that the plume velocity is the primary driver of seasonal basal melt rate variability, while changes in ambient water temperature play a secondary role in the range of oceanographic conditions that are observed below the Ekström Ice Shelf. These findings offer new insights into the dynamics of ice–ocean interactions in East Antarctica, emphasising the need for further observations to refine our understanding of ocean variability within ice shelf cavities and improve assessments of ice shelf mass balance.

  • Basal melting of Antarctic ice shelves significantly contributes to ice sheet mass loss, with distinct regional disparities in melt rates driven by ocean properties. In Dronning Maud Land (DML), East Antarctica, cold water predominantly fills the ice shelf cavities, resulting in generally low annual melt rates. In this study, we present a 4-year record of basal melt rates at the Ekström Ice Shelf, measured using an autonomous phase-sensitive radio-echo sounder (ApRES). Observations reveal a low mean annual melt rate of 0.44 m a−1, with a seasonal variability. Enhanced melting occurs in winter and spring, peaking at over 1 m a−1, while rates are decreased in summer and autumn. We hypothesise that the dense water formed during sea-ice formation erodes the water column stratification during late winter and spring, leading to an increase in the buoyancy of the ice shelf water plume. An idealised plume model supports this hypothesis, indicating that the plume velocity is the primary driver of seasonal basal melt rate variability, while changes in ambient water temperature play a secondary role in the range of oceanographic conditions that are observed below the Ekström Ice Shelf. These findings offer new insights into the dynamics of ice–ocean interactions in East Antarctica, emphasising the need for further observations to refine our understanding of ocean variability within ice shelf cavities and improve assessments of ice shelf mass balance.

  • The Antarctic Ice Sheet represents the largest source of uncertainty in future sea level rise projections, with a contribution to sea level by 2100 ranging from −5 to 43 cm of sea level equivalent under high carbon emission scenarios estimated by the recent Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). ISMIP6 highlighted the different behaviors of the East and West Antarctic ice sheets, as well as the possible role of increased surface mass balance in offsetting the dynamic ice loss in response to changing oceanic conditions in ice shelf cavities. However, the detailed contribution of individual glaciers, as well as the partitioning of uncertainty associated with this ensemble, have not yet been investigated. Here, we analyze the ISMIP6 results for high carbon emission scenarios, focusing on key glaciers around the Antarctic Ice Sheet, and we quantify their projected dynamic mass loss, defined here as mass loss through increased ice discharge into the ocean in response to changing oceanic conditions. We highlight glaciers contributing the most to sea level rise, as well as their vulnerability to changes in oceanic conditions. We then investigate the different sources of uncertainty and their relative role in projections, for the entire continent and for key individual glaciers. We show that, in addition to Thwaites and Pine Island glaciers in West Antarctica, Totten and Moscow University glaciers in East Antarctica present comparable future dynamic mass loss and high sensitivity to ice shelf basal melt. The overall uncertainty in additional dynamic mass loss in response to changing oceanic conditions, compared to a scenario with constant oceanic conditions, is dominated by the choice of ice sheet model, accounting for 52 % of the total uncertainty of the Antarctic dynamic mass loss in 2100. Its relative role for the most dynamic glaciers varies between 14 % for MacAyeal and Whillans ice streams and 56 % for Pine Island Glacier at the end of the century. The uncertainty associated with the choice of climate model increases over time and reaches 13 % of the uncertainty by 2100 for the Antarctic Ice Sheet but varies between 4 % for Thwaites Glacier and 53 % for Whillans Ice Stream. The uncertainty associated with the ice–climate interaction, which captures different treatments of oceanic forcings such as the choice of melt parameterization, its calibration, and simulated ice shelf geometries, accounts for 22 % of the uncertainty at the ice sheet scale but reaches 36 % and 39 % for Institute Ice Stream and Thwaites Glacier, respectively, by 2100. Overall, this study helps inform future research by highlighting the sectors of the ice sheet most vulnerable to oceanic warming over the 21st century and by quantifying the main sources of uncertainty.

Last update from database: 12/1/25, 3:10 AM (UTC)

Explore