Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 2 resources
-
Sea ice plays a dynamic role in the air-sea exchange of CO2. In addition to abiotic inorganic carbon fluxes, an active microbial community produces and remineralizes organic carbon, which can accumulate in sea ice brines as dissolved organic matter (DOM). In this study, the characteristics of DOM fluorescence in Antarctic sea ice brines from the western Weddell Sea were investigated. Two humic-like components were identified, which were identical to those previously found to accumulate in the deep ocean and represent refractory material. Three amino-acid-like signals were found, one of which was unique to the brines and another that was spectrally very similar to tryptophan and found both in seawater and in brine samples. The tryptophan-like fluorescence in the brines exhibited intensities higher than could be explained by conservative behavior during the freezing of seawater. Its fluorescence was correlated with the accumulation of nitrogen-rich DOM to concentrations up to 900 μmol L−1 as dissolved organic carbon (DOC) and, thus, potentially represented proteins released by ice organisms. A second, nitrogen-poor DOM fraction also accumulated in the brines to concentrations up to 200 μmol L−1 but was not correlated with any of the fluorescence signals identified. Because of the high C:N ratio and lack of fluorescence, this material is thought to represent extracellular polymeric substances, which consist primarily of polysaccharides. The clear grouping of the DOM pool into either proteinaceous or carbohydrate-dominated material indicates that the production and accumulation of these two subpools of DOM in sea ice brines is, to some extent, decoupled.
-
The sea ice does not only determine the ecology of ice biota, but it also influences the pelagic systems under the ice cover and at ice edges. In this paper, new estimates of Arctic and Antarctic production of biogenic carbon are derived, and differences as well as similarities between the two oceans are examined. In ice-covered seas, high algal concentrations (blooms) occur in association with several types of conditions. Blooms often lead to high sedimentation of intact cells and faecal pellets. In addition to ice-related blooms, there is progressive accumulation of organic matter in Arctic multi-year ice, whose fate may potentially be similar to that of blooms. A fraction of the carbon fixed by microalgae that grow in sea ice or in relation to it is exported out of the production zone. This includes particulate material sinking out of the euphotic zone, and also material passed on to the food web. Pathways through which ice algal production does reach various components of the pelagic and benthic food webs, and through them such top predators as marine mammals and birds, are discussed. Concerning global climate change and biogeochemical fluxes of carbon, not all export pathways from the euphotic zone result in the sequestration of carbon for periods of hundreds of years or more. This is because various processes, that take place in both the ice and the water column, contribute to mineralize organic carbon into CO2 before it becomes sequestered. Processes that favour the production and accumulation of biogenic carbon as well as its export to deep waters and sequestration are discussed, together with those that influence mineralization in the upper ice-covered ocean.
Explore
Topic
- karbondioksid
- biodiversitet (1)
- biogeokjemi (1)
- fluorescens (1)
- gassutveksling (1)
- havis (2)
- klimaendringer (1)
- marin biologi (1)
- marin økologi (1)
- mikrobielle organismer (1)
- mikrobiologi (1)
- økologi (1)
- polarområdene (1)
- sjøis (1)
- Sørishavet (2)
- Weddellhavet (1)
Resource type
- Journal Article (2)
Publication year
-
Between 1900 and 1999
(1)
-
Between 1990 and 1999
(1)
- 1992 (1)
-
Between 1990 and 1999
(1)
-
Between 2000 and 2025
(1)
-
Between 2010 and 2019
(1)
- 2011 (1)
-
Between 2010 and 2019
(1)
Online resource
- yes (2)