Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 4 resources
-
The rapid diversification of notothenioid fishes in the waters surrounding the Antarctic continent is a prime example of the process of adaptive radiation. Within around 10 million years, Antarctic notothenioids have diversified into over 100 species with a broad range of lifestyles and ecological adaptations. However, the exact number of species within this radiation has long been unclear. Particularly challenging is the taxonomy of the genus Channichthys, for which between one and nine species have been recognized by different authors. The putative species from this genus are known from a limited number of representative specimens, of which most were sampled decades ago. Here, we investigated the mitochondrial genomes of museum specimens representing the four recently recognized species Unicorn Icefish (C. rhinoceratus), Red Icefish (C. rugosus), Sailfish Pike (C. velifer), and Charcoal Icefish (C. panticapaei), complemented by morphological analyses. All analyzed specimens were collected in the 1960s and 1970s and fixed in formaldehyde, and their DNA has thus been heavily degraded. Applying ancient-DNA protocols for DNA extraction and single-stranded library preparation, we were nevertheless able to obtain sufficient endogenous DNA to reconstruct the mitochondrial genomes of one specimen of each species. These mitochondrial genome sequences were nearly identical for the three specimens assigned to Unicorn Icefish, Red Icefish, and Sailfish Pike, while greater mitochondrial divergence was observed for the Charcoal Icefish specimens. We discuss possible explanations of the contrast between these molecular results and the recognizable morphological variation found among the four species, and recommend that at least the Charcoal Icefish be included the list of valid icefish and notothenioid species.Competing Interest StatementThe authors have declared no competing interest.
-
Understanding population connectivity in the marine realm is crucial for conserving biodiversity, managing fisheries, and predicting species responses to environmental change. This is particularly important in Antarctic waters, where unique evolutionary histories and extreme conditions shape marine biodiversity. The longfin icedevil Aethotaxis mitopteryx is an elusive notothenioid fish endemic to Antarctic waters. To explore population connectivity in A. mitopteryx, we used RAD-seq to investigate the genetic differentiation of two populations, one from the Eastern Weddell Sea and the other from the Eastern Antarctic Peninsula, two regions of ecological relevance greatly impacted by climate change. Despite spatial separation, analyses revealed no significant genetic differentiation between the two populations, suggesting extensive gene flow. A pronounced genetic distinction was, however, observed between males and females. This differentiation was largely localized to a specific chromosome, implying a genetic sex determination system with males being the heterogametic sex. These findings contribute novel insights into the genetic structure of A. mitopteryx populations and expand our understanding of genetic mechanisms in Antarctic fish. This study provides a foundation for further investigations into the evolutionary and ecological implications of sex chromosome differentiation in extreme environments.
-
Understanding population connectivity in the marine realm is crucial for conserving biodiversity, managing fisheries, and predicting species responses to environmental change. This is particularly important in Antarctic waters, where unique evolutionary histories and extreme conditions shape marine biodiversity. The longfin icedevil Aethotaxis mitopteryx is an elusive notothenioid fish endemic to Antarctic waters. To explore population connectivity in A. mitopteryx, we used RAD-seq to investigate the genetic differentiation of two populations, one from the Eastern Weddell Sea and the other from the Eastern Antarctic Peninsula, two regions of ecological relevance greatly impacted by climate change. Despite spatial separation, analyses revealed no significant genetic differentiation between the two populations, suggesting extensive gene flow. A pronounced genetic distinction was, however, observed between males and females. This differentiation was largely localized to a specific chromosome, implying a genetic sex determination system with males being the heterogametic sex. These findings contribute novel insights into the genetic structure of A. mitopteryx populations and expand our understanding of genetic mechanisms in Antarctic fish. This study provides a foundation for further investigations into the evolutionary and ecological implications of sex chromosome differentiation in extreme environments.
-
Numerous novel adaptations characterise the radiation of notothenioids, the dominant fish group in the freezing seas of the Southern Ocean. To improve understanding of the evolution of this iconic fish group, here we generate and analyse new genome assemblies for 24 species covering all major subgroups of the radiation, including five long-read assemblies. We present a new estimate for the onset of the radiation at 10.7 million years ago, based on a time-calibrated phylogeny derived from genome-wide sequence data. We identify a two-fold variation in genome size, driven by expansion of multiple transposable element families, and use the long-read data to reconstruct two evolutionarily important, highly repetitive gene family loci. First, we present the most complete reconstruction to date of the antifreeze glycoprotein gene family, whose emergence enabled survival in sub-zero temperatures, showing the expansion of the antifreeze gene locus from the ancestral to the derived state. Second, we trace the loss of haemoglobin genes in icefishes, the only vertebrates lacking functional haemoglobins, through complete reconstruction of the two haemoglobin gene clusters across notothenioid families. Both the haemoglobin and antifreeze genomic loci are characterised by multiple transposon expansions that may have driven the evolutionary history of these genes.
Explore
Topic
- biodiversitet (2)
- fisker (2)
- fiskerier (2)
- genetikk (2)
- genetisk analyse (1)
- klimaendringer (1)
- marin biologi (4)
- marin økologi (2)
- morfologi (1)
- økologi (1)
- Sørishavet (4)
- taksonomi (1)
- Weddellhavet (2)
- zoologi (2)
Resource type
- Journal Article (4)