Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

In authors or contributors
  • There is a paucity of information on the foraging ecology, especially individual use of sea-ice features and icebergs, over the non-breeding season in many seabird species. Using geolocators and stable isotopes, we defined the movements, distribution and diet of adult Antarctic petrels Thalassoica antarctica from the largest known breeding colony, the inland Svarthamaren, Antarctica. More specifically, we examined how sea-ice concentration and free-drifting icebergs affect the distribution of Antarctic petrels. After breeding, birds moved north to the marginal ice zone (MIZ) in the Weddell sector of the Southern Ocean, following its northward extension during freeze-up in April, and they wintered there in April–August. There, the birds stayed predominantly out of the water (60–80% of the time) suggesting they use icebergs as platforms to stand on and/or to rest. Feather δ15N values encompassed one full trophic level, indicating that birds fed on various proportions of crustaceans and fish/squid, most likely Antarctic krill Euphausia superba and the myctophid fish Electrona antarctica and/or the squid Psychroteuthis glacialis. Birds showed strong affinity for the open waters of the northern boundary of the MIZ, an important iceberg transit area, which offers roosting opportunities and rich prey fields. The strong association of Antarctic petrels with sea-ice cycle and icebergs suggests the species can serve, year-round, as a sentinel of environmental changes for this remote region.

  • Understanding the drivers and effects of exposure to contaminants such as mercury (Hg) and organochlorine compounds (OCs) in Antarctic wildlife is still limited. Yet, Hg and OCs have known physiological and fitness effects in animals, with consequences on their populations. Here we measured total Hg (a proxy of methyl-Hg) in blood cells and feathers, and 12 OCs (seven polychlorinated biphenyls, PCBs, and five organochlorine pesticides, OCPs) in plasma of 30 breeding female Antarctic petrels Thalassoica antarctica from one of the largest colonies in Antarctica (Svarthamaren, Dronning Maud Land). This colony is declining and there is poor documentation on the potential role played by contaminants on individual physiology and fitness. Carbon (δ13C) and nitrogen (δ15N) stable isotope values measured in the females' blood cells and feathers served as proxies of their feeding ecology during the pre-laying (austral spring) and moulting (winter) periods, respectively. We document feather Hg concentrations (mean ± SD, 2.41 ± 0.83 μg g−1 dry weight, dw) for the first time in this species. Blood cell Hg concentrations (1.38 ± 0.43 μg g−1 dw) were almost twice as high as those reported in a recent study, and increased with pre-laying trophic position (blood cell δ15N). Moulting trophic ecology did not predict blood Hg concentrations. PCB concentrations were very low (Σ7PCBs, 0.35 ± 0.31 ng g−1 wet weight, ww). Among OCPs, HCB (1.02 ± 0.36 ng g−1 ww) and p, p’-DDE (1.02 ± 1.49 ng g−1 ww) residues were comparable to those of ecologically-similar polar seabirds, while Mirex residues (0.72 ± 0.35 ng g−1 ww) were higher. PCB and OCP concentrations showed no clear relationship with pre-laying or moulting feeding ecology, indicating that other factors overcome dietary drivers. OC residues were inversely related to body condition, suggesting stronger release of OCs into the circulation of egg-laying females upon depletion of their lipid reserves. Egg volume, hatching success, chick body condition and survival were not related to maternal Hg or OC concentrations. Legacy contaminant exposure does not seem to represent a threat for the breeding fraction of this population over the short term. Yet, exposure to contaminants, especially Mirex, and other concurring environmental stressors should be monitored over the long-term in this declining population.

  • Abstract Individual heterogeneity in diet and foraging behaviour is common in wild animal populations, and can be a strong determinant of how populations respond to environmental changes. Within populations, variation in foraging behaviour and the occurrence of individual tactics in relation to resources distribution can help explain differences in individual fitness, and ultimately identify important factors affecting population dynamics. We examined how foraging behaviour and habitat during the breeding period related to the physiological state of a long-ranging seabird adapted to sea ice, the Antarctic petrel Thalassoica antarctica. Firstly, using GPS tracking and state-switching movement modelling (hidden Markov models) on 124 individual birds, we tested for the occurrence of distinct foraging tactics within our study population. Our results highlight a large variation in the movement and foraging behaviour of a very mobile seabird, and delineate distinct foraging tactics along a gradient from foraging in dense pack ice to foraging in open water. Secondly, we investigated the effects of these foraging tactics on individual state at return from a foraging trip. We combined movement data with morphometric and physiological measurements of a suite of plasma metabolites that provided a general picture of a bird's individual state. Foraging in denser sea ice was associated with lower gain in body mass during brooding, as well as lower level of energy acquisition (plasma triacylglycerol) during both brooding and incubation. We found no clear relationship between the foraging tactic in relation to sea ice and the energetic stress (changes in plasma corticosterone), energetic balance (β-hydroxybutyrate) or trophic level (δ15N). However, a shorter foraging range was related to both the energetic balance (positively) and the trophic level (negatively). Our results highlight a diverse range of foraging tactics in relation to sea ice in Antarctic petrels. While the various foraging tactics do not seem to strongly alter energetic balance, they may affect other aspects of Antarctic petrels' physiology. Future changes in sea-ice habitats can thus be expected to have an impact on the individual state of seabirds such as Antarctic petrels, which could ultimately affect their population dynamics. Nonetheless, strong individual heterogeneity in the use of sea-ice habitats by a typical pagophilic species might strengthen its resilience to environmental changes and in particular to forecasted sea-ice loss. A free Plain Language Summary can be found within the Supporting Information of this article.

Last update from database: 4/1/25, 2:10 AM (UTC)