Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 4 resources
-
Multiyear time series of ocean current and temperatures from beneath Filchner-Ronne Ice Shelf, Antarctica, demonstrate both seasonal and interannual variability. The seasonal signal is visible at all measurement sites, although it was swamped for a 2-year period (1999–2001) when extraordinarily light sea-ice cover in the southern Weddell Sea during the 1997–1998 Austral summer caused an anomalously large pulse of High Salinity Shelf Water to flush beneath the ice shelf. The pulse was observed twice at an instrumented site near the Berkner Island coast, once on its way to the Filchner Depression and once after the signal had propagated around the depression and returned to the site as an anomalously large pulse of Ice Shelf Water. The timings of the signal allow an estimate of 24–30 months for the flushing timescales of the sub-ice shelf ocean cavity, indicating that the cavity is highly responsive to external forcing. A timescale for the full ventilation of the cavity of 4–5 years is obtained from the length of time the sub-ice shelf conditions take to return to their original state, a timescale significantly shorter than previous estimates.
-
We present oceanographic data from beneath the northern Ronne Ice Shelf. The data were collected during the austral summer of 2002–2003 from four sites located near the ice front in the Ronne Depression. They consist of conductivity-temperature-depth (CTD) profiles and time series from moored instruments that vary in length from 9 to 20 weeks. A strong, tidally modulated inflow of relatively fresh water was found at the eastern margin of the Ronne Depression. This low-density inflow powers high basal melt rates that are responsible for a substantially thinned area of ice shelf. A northward flow of Ice Shelf Water along the western margin of the depression (the Antarctic Peninsula coast) was inferred from the CTD data. From the new CTD and current meter data, and from published results from cruises along the ice front, we suggest that the flows at the margins of the Ronne Depression establish east-west density gradients that drive an anticyclonic circulation within the depression. The barotropic component of the circulation forms a gyre of strength 5 × 105 m3 s−1 and occupies a bowl in the field of water column thickness in the northern portion of the depression. All water masses sampled had temperatures below the surface freezing point and are therefore classified as Ice Shelf Water. The relatively complex nature of the oceanographic regime in the Ronne Depression is overlain by a seasonal variability that is hinted at by the available time series, probably explaining the apparent absence of inflowing HSSW at the time of the measurements.
-
The ocean cavity beneath Filchner-Ronne Ice Shelf is observed to respond to the seasonal cycle of water mass production on the continental shelf of the southern Weddell Sea. Here we use a numerical model to investigate the propagation of newly formed shelf waters into the cavity. We find that the model reproduces the most distinctive features of the observed seasonality and offers a plausible explanation for those features. The most saline shelf waters are produced in the far west, where the inflow to the cavity peaks twice each year. The major peak occurs during the short period around midwinter when convection reaches full depth and the densest waters are generated. Once the surface density starts to decline, dynamic adjustment of the restratified water column leads to a gradual fall in the salinity at depth and a secondary peak in the inflow that occurs in summer at the western coast. Beneath the ice shelf the arrival of the wintertime inflow at the instrumented sites is accompanied by a rapid warming, while the slower decline in the inflow leads to a more gradual cooling. Water brought in by the secondary, summer peak flows mainly to the eastern parts of the cavity. Here the seasonality is suppressed because the new inflows mix with older waters that recirculate within a topographic depression. This pooling of waters in the east, where the primary outflow of Ice Shelf Water is generated, dampens the impact of seasonality on the local production of Weddell Sea Bottom Water.
-
Cold shelf waters flowing out of the Filchner Depression in the southern Weddell Sea make a significant contribution to the production of Weddell Sea Bottom Water (WSBW), a precursor to Antarctic Bottom Water (AABW). We use all available current meter records from the region to calculate the flux of cold water (<−1.9°C) over the sill at the northern end of the Filchner Depression (1.6 ± 0.5 Sv), and to determine its fate. The estimated fluxes and mixing rates imply a rate of WSBW formation (referenced to −0.8°C) of 4.3 ± 1.4 Sv. We identify three pathways for the cold shelf waters to enter the deep Weddell Sea circulation. One path involves flow constrained to follow the shelf break. The other two paths are down the continental slope, resulting from the cold dense water being steered northward by prominent ridges that cross the continental slope near 36°W and 37°W. Mooring data indicate that the deep plumes can retain their core characteristics to depths greater than 2000 m. Probably aided by thermobaricity, the plume water at this depth can flow at a speed approaching 1 m s−1, implying that the flow is occasionally supercritical. We postulate that such supercriticality acts to limit mixing between the plume and its environment. The transition from supercritical to slower, more uniform flow is associated with very efficient mixing, probably as a result of hydraulic jumps.
Explore
Topic
- Antarktis (3)
- geofysikk (3)
- havstrømmer (2)
- isfront (1)
- isshelf (2)
- oseanografi (4)
- Sørishavet (1)
- vannmasser (1)
- Weddellhavet (3)
Resource type
- Journal Article (4)
Publication year
Online resource
- yes (4)